
Results on Transmission Power Control for
Remote State Estimation
Junfeng Wu, Yuzhe Li, Daniel E. Quevedo, Ling Shi

Abstract—We consider a sensor transmission power control
problem for remote state estimation. In this problem, a sensor
sends its local estimate to a remote estimator over a wire-
less packet-dropping communication channel. The transmission
power is determined by a recently proposed algorithm which
uses the innovative information contained in the measurement.
In the current paper, we focus on parameter optimization
arising from the selection of design parameters for this power
controller. The existing work obtained a suboptimal solution to
the parameter optimization problem, while by using a vector
rearrangement inequality argument and the vector majoriza-
tion, we now show that there exists an optimal solution within a
subset of the whole feasible set. By leveraging this property, we
obtain an optimal solution via solving a convex optimization
problem. Key words: Kalman filtering; transmission power
control; packet loss; majorization; convex optimization

Index Terms—Kalman filtering; transmission power control;
packet loss; majorization; convex optimization

I. NOTATIONS

Sn+ is the set of n by n positive semi-definite matrices. For
a square matrix X , by abuse of notations, we use det(X) and
X−1 in case of a singular matrix X , to denote the pseudo-
determinant and the Moore-Penrose pseudo-inverse. For a
vector x ∈ Rn, we use x↓ and x↑ to represent the vectors with
the same entries, but re-ordered in decreasing and increasing
order respectively. The symbol N (x,Σ) denotes a Gaussian
distribution with mean x and covariance Σ. We introduce an
operator h : Sn+ → Sn+, where h(X) , AXA′+W, W ∈ Sn+.

II. SYSTEM MODEL

Consider a discrete-time linear time-invariant (LTI) system
measured by a sensor:

xk+1 = Axk + wk,

yk = Cxk + vk,

where A ∈ Rn×n and k ∈ N, xk ∈ Rn is the system
state, yk ∈ Rm is the sensor’s measurement, the state
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Fig. 1: Remote state estimation scheme.

noise wk ∈ Rn and observation noise vk ∈ Rm are zero-
mean i.i.d. Gaussian with E[wkw

′
j ] = δkjW (W ≥ 0),

E[vk(vj)
′] = δkjR (R � 0), E[wk(vj)

′] = 0 ∀j, k ∈ N.
The initial state x0 is a zero-mean Gaussian random vector,
uncorrelated with wk and vk. The pair (A,C) is assumed to
be detectable and (A,W ) stabilizable.

As shown in Fig. 1, the sensor locally runs a Kalman filter
and generates a local MMSE estimate. Then it transmits
the local estimate to a remote estimator using power level
uk to be designed. Denote the sensor’s local estimate and
error covariance by x̂sk and P sk respectively, i.e., x̂sk ,
E[xk|y1, ..., yk] and P sk , E[(xk − x̂sk)(xk − x̂sk)′|y1, ..., yk].
We assume that this local Kalman filter has entered steady
state, that is, P sk = P ≥ 0, ∀k ∈ N.

The sensor sends data to a remote estimator over an
additive white Gaussian noise (AWGN) channel suffering
from channel fading [1]. The details and assumptions for
the communication channel are provides in [2].

We use a random binary process {γk}k∈N to describe
communication success as follows:

γk =

{
1, if x̂sk arrives error-free at time k,
0, otherwise,

(1)

initialized with γ0 = 1. Let uk ∈ [0,+∞) be the transmis-
sion power for the QAM symbol at time k. From [1], the
packet loss probability can be approximated by

Pr (γk = 0|uk, hk) ≈ exp
(−αhkuk

N0B

)
,

where N0 is the AWGN power spectral density, B is the
channel bandwidth, hk is the channel power gain, and α is a
constant depending on the specific modulation scheme used.
Throughout this paper we will adopt (1) with equality.
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III. TRANSMISSION POWER CONTROL AND REMOTE
STATE ESTIMATION

We restrict our attention to one type of transmission
power controllers that render the estimation problem linear
and tractable. The benefit of a linear estimation process
is that a closed-form recursive MMSE estimator can be
derived. See [2] for the idea of preserving the linearity of
the estimation process described below.

Let the incremental innovation contained in the sensor’s
local estimate compared to the latest reception instant be
defined as follows: zk = x̂sk − Aτk x̂sk−τk , where τk , k −
max16t6k−1{t : γt = 1}. Consider a transmission power
controller f : Rn 7→ [0,∞) of the following form:

uk = fk(zk) ,
N0B

2αhk
z′kQkzk + ϕk, (2)

where ϕk is a baseline power level independent of zk, and
Qk ∈ Sn+ and ϕk > 0 are two parameters to be designed.

We denote by Ik the information available to the remote
estimator up to time k, i.e.,

Ik = {γ1x̂
s
1, ..., γkx̂

s
k} ∪ {γ1, . . . , γk} ∪ {h1, . . . , hk}.

The remote estimator generates the MMSE estimate, x̂k,
based on Ik, where x̂k = Ef1:k [xk|Ik] (cf., [3]). The
corresponding estimation error covariance is defined as Pk ,
Ef1:k [(xk − x̂k)(xk − x̂k)′|Ik], where expectations are taken
under fixed f1:k , (f1, . . . , fk).

Before presenting our main results on how to design
the power controller parameters, we will first review some
selected results from [2]. Readers are referred to [2] for the
proofs.

Lemma 1 ( [2, Lemma 4.4]): Consider the transmis-
sion power controller (2). The conditional probability
p(zk; z|Ik−1) ∼ N (0,Σk), where Σk is given by the
following recursion:

Σk =

{
AΨk−1A

′ + h(P )− P , if γk−1 = 0
h(P )− P , if γk−1 = 1,

with Ψk−1 =

{
0, if k = 1
(Qk−1 + Σk−1

−1)−1, if k = 2, . . . .
Moreover, p(zk; z|Ik−1, γk = 0) ∼ N (0,Ψk).
In general, transmission power controllers depending on
sensor measurements lead to complex nonlinear filtering
problems. Interestingly, with power controller as in (2), the
optimal estimates are easy to find. The following lemma
shows how the estimate and the estimation error are explicitly
computed.

Lemma 2 ( [2, Theorem 4.8]): Consider the transmission
power controller (2). The MMSE estimate of xk is given by

x̂k =

{
x̂sk, if γk = 1,
Aτk x̂k−τk , if γk = 0.

(3)

The estimation error covariance at the estimator is given
by

Pk =

{
P , if γk = 1,
Ψk + P , if γk = 0.

The packet loss probability and the expected transmission
power can be characterized in terms of hk, ϕk, Ψk and Σk
as follows.

Lemma 3 ( [2, Proposition 4.5]): Consider the transmission
power controller (2). The packet loss probability is given by

P(γk = 0|Ik−1, hk) =
1√

det(Σk)det(Ψ−1
k )

exp (−βhkϕk) .

The expected transmission power is

E[uk|Ik−1, hk] =
1

2βhk

(
Tr(ΣkΨ−1

k )− nτk
)

+ ϕk,

where nτk is the rank of hτk(P )−P , which is known given
Ik−1.

IV. MAIN RESULTS

In this section, we design controller parameters Qk and ϕk
which minimize the expected estimation error per time step,
subject to transmission energy constraints. We thus focus on
the following problem:

Problem 1:

minimize
Qk,ϕk

E[Tr(Pk)|Ik−1, hk]

subject to E[uk|Ik−1, hk] ≤ ū, ū > 0,

where the expectation is taken over binary variable γk, and
ū is the energy constraint. To the best of our knowledge, it
is rather difficult to optimize the performance over a long
horizon under transmission power controller (2). Problem 1
was originally proposed and studied in [2], where only
suboptimal solutions were given. By Lemmas 2 and 3, we
can break down E[Tr(Pk)|Ik−1, hk] according to γk = 0 or
γk = 1, i.e.,

E[Tr(Pk)|Ik−1, hk] = P + P(γk = 0|Ik−1, hk)Tr(Ψk).

Then, we equivalently recast Problem 1 as follows:
Problem 2: Given Ik−1 and hk,

minimize
Ψk,ϕk

exp (−βhkϕk)√
det(Σk)det(Ψ−1

k )
Tr(Ψk),

subject to
1

2βhk

(
Tr(ΣkΨ−1

k )− nτk
)

+ ϕk ≤ ū.

Note that in Problem 2, Σk is known given Ik−1. Problem 2
is difficult to solve since Ψk is involved in det(Ψ−1

k ),
Tr(Ψk) and Tr(ΣkΨ−1

k ) — both the spectra of Ψk and of
ΣkΨ−1

k should be taken into account. In [2], Problem 2 was
approximated by replacing Ψk with εI such that Ψk � εI .
This leads to only suboptimal solutions. To overcome this
drawbacks, we will next show that an optimal solution can
be computed via solving a convex optimization problem. For
that purpose, we first note that since Σk is Hermitian, it is
unitary diagonalizable: there exist a unitary matrix Vk and a
diagonal matrix Θk such that

Σk = VkΘkV
∗
k . (4)
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Denote Θk , diag
(
0, . . . , 0, θk,1, . . . , θk,nτk

)
. Without loss

of generality, let the scalars θk,1, . . . , θk,nτk be in nonde-
creasing order. Since Σk is known, Vk and Θk are also known
matrices. For convenience, let Σ

1/2
k , Vk

√
Θk and define a

new matrix
Φk ,

(
Σ

1/2
k

)∗
Ψ−1
k Σ

1/2
k .

Similarly, (Ψ−1
k )1/2 can be defined. By [2, Lemma 4.1], Φk

is a block diagonal matrix satisfying

Φk ,

[
0 0
0 Φk,2

]
≥
[

0 0
0 Inτk×nτk

]
.

Similarly, there exist a unitary matrix Uk and a diago-
nal matrix Λk such that Φk = UkΛkU

∗
k . Denote Λk ,

diag
(
0, . . . , 0, λk,1, . . . , λk,nτk

)
, where λk,1, . . . , λk,nτk are

in nondecreasing order. Then, by [2, Lemma 4.12],

det(Σk)det(Ψ−1
k ) = det(Φk) =

nτk∏
i=1

λk,i (5)

and

Tr(ΣkΨ−1
k ) = Tr(Φk) =

nτk∑
i=1

λk,i.

In addition, Tr(Ψk) = Tr(Σ
1/2
k Φ−1

k (Σ
1/2
k )∗) = Tr(Φ−1

k Θk).
To derive our results, we require further observations on the
structure of Φk to simplify Problem 2. This property can be
interpreted by majorization, defined as follows:

Definition 1: Let x , [xi], y , [yi] ∈ Rn be given. The
vector y is said to majorize x if

∑k
i=1 y

↓
i ≥

∑k
i=1 x

↓
i for

all k = 1, . . . , n with equality for k = n, and denote it by
y � x.

Lemma 4 ( [4, Lemma 1]): Let H be a Hermitian matrix.
the vector of eigenvalues of H majorizes the vector of
diagonal entries of H .

Lemma 5 ( [5, Rearrangement Inequality]): Let real num-
bers x1 ≤ · · · ≤ xn and y1 ≤ · · · ≤ yn be given.
For any permutation xσ(1), . . . , xσ(n) of x1, . . . , xn, we
have xσ(1)y1 + · · · + xσ(n)yn ≥ xny1 + · · · + x1yn and
xσ(1)y1 + · · ·+ xσ(n)yn ≤ x1y1 + · · ·+ xnyn.

For a given vector y ∈ Rn, define a function: φy(x) =
(x↓)′y↑, where x ∈ Rn. The function φy has the following
property.

Definition 2: A real-valued function φ defined on a set
A ⊂ Rn is said to be Schur-cancave if y � x on A implies
φ(y) ≤ φ(x).

Lemma 6 ( [4, Lemma 4]): For a given vector y ∈ Rn, the
function φy is Schur-concave on Rn.

Combining Lemmas 5 and 6, the next technical result
follows.

Lemma 7: Let x , [xi], y , [yi], z , [zi] ∈ Rn be given
vectors. If z � x, then x′y ≥ (z↓)′y↑.

Proof 1: By Lemma 6, we have (x↓)′y↑ = φy(x) ≥
φy(z) = (z↓)′y↑. Moreover, by Lemma 5, x′y ≥ (x↓)′y↑,
which completes the proof. �

We are in a position to present the following result.

Proposition 1: Suppose the pair
(
Ψopt
k , ϕopt

k

)
is a solu-

tion to Problem 2. Denote Φopt
k , (Σ

1/2
k )∗(Ψopt

k )−1Σ
1/2
k

and let the eigenvalues (in a nondecreasing order) of
Φopt
k be {0, . . . , 0, λopt

k,1 , . . . , λ
opt
k,nτk

}. Therefore, the pair(
Ψ†k = Σ

1/2
k (Λopt

k )−1(Σ
1/2
k )∗, ϕopt

k

)
is also a solution,

where Λopt
k , diag

(
0, . . . , 0, λopt

k,1 , . . . , λ
opt
k,nτk

)
.

Proof 2: Suppose Φopt
k is not diagonal. There exists a

unitary matrix U satisfying Φopt
k = UΛopt

k U∗. Since Φopt
k

is not diagonal, U 6= I and λopt
k,1 , . . . , λ

opt
k,nτk

are not all
equal. By Lemma 4, the vector of the nonzero diago-
nal entries of (Λopt

k )−1 majorizes that of (Φopt
k )−1. Then

Tr((Φopt
k )−1Θk) ≥ Tr((Λopt

k )−1Θk) by Lemma 7. In addi-
tion, det((Λopt

k )−1) = det((Φopt
k )−1) and Tr((Λopt

k )−1) =
Tr((Φopt

k )−1), which implies the optimality of the pair(
Ψ†k, ϕ

opt
k

)
. �

Proposition 1 shows that there exists an optimal Qk
such that Σk and Ψk are simultaneously diagonalizable by
a unitary similarity transformation. Thus, we can restrict our
attention to a subset of the positive definite cone for searching
Ψk. In this subset, Ψk is such that Φk is a diagonal matrix
and Φk = diag

(
0, . . . , 0, λopt

k,1 , . . . , λ
opt
k,nτk

)
.

Theorem 1: An optimal solution to Problem 2 is given by
the following convex optimization problem:

Problem 3:

minimize
{dk,i}i=1:nτk

,

ϕk

log

nτk∑
i=1

exp
(
−1

2

nτk∑
j=1

dk,j−ln θk,idk,i−βhkϕk
) ,

subject to
1

2βhk

(nτk∑
i=1

exp(dk,i)− nτk

)
+ ϕk ≤ ū,

ϕk, dk,i ≥ 0,∀i = 1, . . . , nτk ,

where θk,i’s are the nonzero eigenvalues of Θk. Then,
Ψopt
k = Σ

1/2
k Dk(Σ

1/2
k )∗, where

Dk =
(

diag
(
0, . . . , 0, exp(dk,1) . . . , exp(dk,nτk )

))−1

.

Proof 3: Let λk,i = exp(dk,i). Problem 3 follows from
Problem 2, equation (5), Proposition 1 and the fact that
logarithm, as a monotonically increasing function, does not
change extreme points of a function. In addition, since
exponential functions and log-sum-exp functions are convex,
Problem 3 is a convex optimization problem, which com-
pletes the proof. �
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University Press, 1952.

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

232


