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Abstract— This paper proposes an analytical method to charac-
terize the behavior of multiple critical roots of a retarded system
with two delays. Expressing locally the related characteristic
function, as a Weierstrass polynomial, we derive several results
to analyze the stability behavior of such characteristic roots
with respect to small variations on the delay parameters.
The proposed results are illustrated by considering several
numerical examples.
Index Terms— Delay Systems, Weierstrass Polynomial, Newton-
Diagram, Puiseux Series.

I. INTRODUCTION

It is well recognized that one of the main issues in dynamical
systems are those that concern to the stability analysis
(see, for instance, [1]). In particular, for the case of Linear
Time-Invariant (LTI) delay systems, because of the infinite
dimensional state space, such an analysis is not a simple task,
even in the case of fixed-delays [2]. Furthermore, it is well
known that time-delay systems (and in consequence, quasi-
polynomials) have always infinitely many solutions (see, for
further details, [3] and the references therein), however in
general, we will only be interested in analyzing the behavior
of a critical zero of finite multiplicity.
In [4], for a general retarded LTI delay system with multiple
commensurate delays, the stability behavior of the solutions
has been explored in detail. More precisely, they have first,
fully characterized the stability properties of such systems by
proposing conditions to find the set of critical delay values,
at which the system’s characteristic quasi-polynomial has
critical zeros on the imaginary axis. Secondly, considering
the delay as a variable parameter and by adopting an operator
based-approach (see, for instance, [5]) they have expanded
the solutions of the quasi-polynomial in terms of a Taylor
(or Puiseux) series, allowing them to analyze the solutions
behavior as the delay varies around a critical delay value.
Multiple delays can also be presented in a more general form,
as non-commensurate delays, that is, all delays are assuming
to be independent of each other. In this case, the stability of
the related quasi-polynomial becomes more complex and is
less studied. For the case of solutions of multiplicity two,
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in [6] the authors have proposed two sectors to analyze
the qualitative properties of these roots when delays are
subject to small deviations and restricted to such sectors.
In this vein, it is worth to mention that unlike the case of
a single parameter, in the multiparameter case there exist
some singular and unexpected behaviors (see, the motivating
examples section) which must be taken into account (see,
for instance [7]), in order that the problem is well-posed. In
other words, the Puiseux type arguments cannot be extended
straightforwardly from one parameter to multiparameter case.
Based on the above arguments, the main goal of this paper is
threefold. First, for multiple imaginary roots, give conditions
to guarantee the existence of a convergent Puiseux (or Taylor)
series. Second, extend the use of the well known Newton
diagram to the case of two parameters and give a method-
ology to express the solutions as a Puiseux series. Finally,
to characterize the solutions according to their geometric
behavior.
The remaining part of the paper is organized as follows:
Section II introduces some preliminary results, motivating
examples and the problem formulation. Section III is devoted
to the main results; specifically we present a method to com-
pute the Weierstrass Polynomial, an algorithm to extend the
Newton diagram procedure, necessary conditions to derive
the generalized Puiseux series and the splitting properties
around multiple roots are described. Finally, Section IV
includes some numerical examples illustrating the proposed
results. The contribution ends with some concluding remarks.
Notations: In the sequel, the following notations will be
adopted: C is the set of complex numbers, i :=

√
−1. Next,

R+ denotes the set of positive real values. The order of
a power series f(x) =

∑
i,j ai,jx

i
1x
j
2 will be denoted by

ord (f) and defined as the smallest number n = i+ j such
that ai,j 6= 0. The ring of complex formal power series is
denote by C[[x]], with subring C{x} of convergent power
series. Finally, given two polynomials f(z) =

∑n
j=0 an−jz

j

and g(z) =
∑m
j=0 bm−jz

j , the resultant of f , g is defined
as

R (f, g) := det



a0 a1 a2 · · · an
a0 a1 · · · · · · an

. . . . . . . . . . . .
a0 a1 · · · · · · an

b0 b1 b2 · · · bm
b0 b1 · · · · · · bm

. . . . . . . . . . . .
b0 b1 · · · · · · bm


.
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II. PRELIMINARIES

A. Retarded Linear Time-Invariant Systems
Consider a retarded LTI system with ha−delays τk, de-
scribed in the state-space form as:

ẋ (t) = A0x (t) +

ha∑
k=1

Akx (t− τk) , τk ≥ 0, (1)

or by the differential-difference equation

y(n)(t) +

n−1∑
`=0

ha∑
k=0

ak`y
(`) (t− τk) = 0, τk ≥ 0, (2)

with characteristic function given by the quasi-polynomial:

f(s, τ) =

ha∑
k=0

pk(s)e−τks, τk ≥ 0, (3)

where the polynomials pk are given by

p0(s) = sn+
n−1∑
`=0

a0`s
`, pk(s) =

n−1∑
`=0

ak`s
`, k = 1, . . . , ha.

B. Local Representation of Analytic Functions
It it possible to reduce the analytic properties of f(x, y) to
algebraic ones. To this purpose, let us consider the following
result (for further details see [8]).
Theorem 1 (Weierstrass Preparation Theorem): Let f(z,x)
be an analytic function vanishing at the singular point z0 ∈
C, x0 ∈ Cn, where z = z0 is an m−multiple root of the
equation f (z,x) = 0, i.e.,

f (z0,x0) =
∂f

∂z
= · · · = ∂m−1f

∂zm−1
= 0,

∂mf

∂zm
6= 0.

where derivatives are evaluated at (z0,x0). Then, there exist
a neighborhood U0 ⊂ Cn+1 of the point (z0,x0) ∈ Cn+1 in
which the function f (z,x) can be expressed as

f (z,x) = W (z,x) b (z,x) , (4)

where W (z,x) is given by

(z − z0)
m

+ wm−1 (x) (z − z0)
m−1

+ · · ·+ w0 (x) ,

and w0(x),. . . ,wm−1(x), b (z,x) are analytic functions
uniquely defined by the function f (z,x), and wi(x0) = 0,
b (z0,x0) 6= 0.
Remark 1: The holomorphic function

W (z,x) = zm + wm−1 (x) zm−1 + · · ·+ w0 (x) , (5)

is known as the Weierstrass polynomial (for further details
on Weierstrass polynomials, see, for instance, [9]).
Remark 2: It can be seen from Theorem 1, that since b (z,x)
is an holomorphic non vanishing function at (0,0), then,
there must exist some neighborhood U ⊂ Cn at which
b(z,x) preserves the same property. Hence, based on this
observation we can ensure that the roots behavior of a
given quasi-polynomial f in the neighborhood U will be
completely described by the roots behavior of W (x, x).

C. Newton Diagram Method

It is well known that solutions of the equation f(x, y) =
0 can be compute term by term by means of the Newton
Diagram Method. Thus, in order to use such a procedure, let
us introduce the following notation (for more details, see,
for instance, [10]). Let f (x, y) be a pseudo-polynomial in
y, i.e.,

f (x, y) =

n∑
k=0

ak(x)yk, (6)

where the corresponding coefficients are given by,

ak (x) = x ρk

∞∑
r=0

arkx
r/q, (7)

ark ∈ C, x and y are complex variables, ρk are non-
negative rational numbers, q is an arbitrary natural number,
an(x) 6≡ 0, and a0(x) 6≡ 0.

Since by simple translation, any point on a curve can be
moved to the origin, we will consider expansions of the
solution of (6) f(x, y) = 0 around the origin, in the following
form

y(x) = yε1x
ε1 + yε2x

ε2 + yε3x
ε3 + · · · , (8)

where ε1 < ε2 < ε3 < · · · and yε1 6= 0. To determine
the possible values of ε1, yε1 , ε2, yε2 , . . ., it is necessary to
consider the Newton’s diagram.
Definition 2.1 (Newton’s Diagram and Polygon): Given a
pseudo-polynomial of the form (6) with coefficients given
by (7), plot k versus ρk for k = 0, 1, . . . , n (if ak (·) ≡ 0,
the corresponding point is disregarded). Denote each of
these points by πk = (k, ρk) and let

Π = {πk : ak(·) 6= 0} ,

be the set of all plotted points. Then, the set Π will be called
the Newton diagram, and the Newton polygon associated with
f(x, y) will be given by the lower boundary of the convex
hull of the set Π.
For a given f(x, y), Fig.1 simply illustrates Definition 2.1.
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Fig. 1. The Newton Diagram for f(x, y).
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Thus, the leading terms of the solutions will have exponents
given by the slopes γ := ε. Its coefficients will be given by
the nonzero solutions of the polynomial equation

P(yε) :=
∑
i

a0,iy
i
ε = 0, (9)

where the sum runs over the terms satisfying ρk + γk = ν
with constant ν ∈ Q. For equations f(x, y) = 0, the Newton
Diagram Method can be formalized by the following theorem
( see [11]).
Theorem 2 (Puiseux Theorem): The equation f(x, y) = 0,
with f given in formal power series such that f(0, 0) = 0,
posses at least one solution in power series of the form:

x = tq, y =

∞∑
i=1

cit
i, q ∈ N.

D. Generalized Puiseux Series and Cones

Theorem 2 allows to find fractional power series solutions,
known as Puiseux series, in the case of algebraic equations.
In this vein, when we deal with singularities of greater
dimension, we must use a ring of multivariable fractional
power series. In [12] it is defined the fractional power series
ring that contains the solutions of algebraic hypersurfaces.
This can be achieved through formal power series defined in
a geometric way, by taking infinite power series

∞∑
i=1

caix
ai/d, where xa = xa11 · · ·xann ,

where the exponents a are taken from a fixed convex cones
with structure related to its Newton polytopes [13].
Definition 2.2: A convex polyhedral cone is a set of the form

σ =

{
m∑
i=1

λivi : λi ∈ R+

}
,

where M = {v1, . . . , vm} is a finite set of vectors in Rn.
We will use fractional iterated power series of several
variables as Generalized Puiseux Power Series (see [14],
[15]), denoted by Kx,d. This series can be constructed by
induction, taking as a base the univariable case Kx1,d and
then, proceed with the field of power series in x

1/d
1 with

power series coefficients in x1/d2 · · ·x1/dn such that

Kx,d = C
((
x
1/d
1

))
· · ·
((
x1/dn

))
.

E. Motivating Examples

Although we can reduce the analysis of a given entire
function f to the study of an algebraic function Pf , in this
section we aim to point out some difficulties that arise in
regarding multiparameter functions. In order to illustrate such
arguments, let us consider the following examples.
Example 2.1: Consider the following polynomial

P (z, ε1, ε2) = z2 + 3ε1z + 2
(
ε21 + 2ε22

)
, (10)

where ε1 and ε2 are considered as perturbation parameters.
It is clear to see, that for ε1 = ε2 = 0, z = 0 is a root of

multiplicity two. In this case, the solutions z1,2 (ε) are not
analytic at ε := (ε1, ε2) = (0, 0) = 0. Furthermore, z1,2 (ε)
does not have a unique representation as a power series which
is convergent in some punctured neighborhood of the origin.
In order to illustrate this assertion, let us consider the region
|ε1| < |ε2|, in this region the solutions admit the following
representation

z1,2 (ε) = −1

2
(3ε1 ± i4ε2) +

1

16
ε1

(
±iε1
ε2
± i

64

(
ε1
ε2

)3

+

± i

2048

(
ε1
ε2

)5

+O

((
ε1
ε2

)5
))

.

Now, if instead of the previous region, we consider the region
|ε2| < |ε1|, then for k ∈ {1, 2} the solutions admit the
following representation

zk(ε)=−2k−1ε1+(−1)
k
4ε2

(
ε2
ε1

+4

(
ε2
ε1

)3
+ 32

(
ε2
ε1

)5
+O

((
ε1
ε2

)5)
.

The above arguments clearly have shown that some further
considerations must be taken into account in the case of
multiparameter functions. Next, as mentioned in previous
sections, in the single parameter case, the Newton diagram
is a powerful tool to analyze the asymptotic behavior for the
solutions of pseudo-polynomials. However, in order to be
able to apply such a procedure to the multiparameter case,
some special situations must be taken into consideration. In
order to motivate the above arguments, let us consider the
following.
Example 2.2: Consider the polynomial

P (z, ε) := z5+
(
ε1ε

3
2 + ε21ε

2
2

)
z3+

(
ε21ε

2
2 + ε31ε2

)
z2+

(
ε41ε2

)
.

(11)
Clearly, z = 0 is a 5−multiple root at ε = (0, 0). Now, let
us form the Newton diagram with respect to ε1, obtaining
Π = {(0, 4), (2, 2), (3, 1), (5, 0)}, illustrated in Fig.2-(a).
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(a) Newton polygon with respect
to ε1.

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0

1

1

2

2

3

4

4 53

(b) Newton polygon with respect
to y2.

Fig. 2. Newton polygons for P (z, ε) in Example 11.

The slope β0 = 1 determines 3−solutions with respect to ε1,
and coefficients that are solutions of the polynomial

P(ξ) = ε2 + ε22ξ
2 + ε32ξ

3 = 0.

In this case, it is clear that the solutions cannot be easily
computed. In order to compute solutions by applying the
Newton procedure, we seek for a monic polynomial. Thus,
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with the aim of overcoming such a difficulty, let us consider
the change of variables (blowing-ups)

ζ; = ξ ε1 = v1ε2 ε2 = v2,

and
v1 = y1v2 v2 = y2.

These change of variables enable us to avoid horizontal seg-
ments in the subsequent steps of the process. The resulting
polynomial P ′(y1, y2) posses the same Newton polygon, and
the segment with β0 = 1 has a monic polynomial

y−52 P ′(ξ, y2) = y42 + y2ξ
2 + ξ3 = 0.

Applying Newton procedure, (see figure 2-(b)) to the above
equation, we derive the fractional power series solution of
P ′:

ζ1(y1, y2) = −y2y1 + o(y1y2),

ζ2,3(y1, y2) = ±iy2/32 y1 + o
(
y1y

1/3
2

)
.

F. Problem Formulation

The present work is focused on computing the first approxi-
mation of the solution of quasi-polynomials around multiple
imaginary roots. In this vein, we will focus in the following
problems:
(i) compute an approximation of the associated Weierstrass

polynomial;
(ii) extend the Newton diagram procedure to Weierstrass

polynomial of several variables;
(iii) obtain conditions that allow obtaining Puiseux series

solutions

s(τ1, τ2) = c(τ
1/d
2 )τβ1 + o(τ

1/d
1 τ

1/d
2 ),

where β = α/d and α ∈ N;
(iv) give conditions on f (s, τ) which describes the splitting

properties of its solutions s(τ1, τ2): Regular Splitting,
Completely Regular Splitting and Non Regular Split-
ting.

III. MAIN RESULTS

A. Computation of Weierstrass Polynomial

In [8], the authors propose a method to compute the Weier-
strass polynomial for an holomorphic function. This method
is based on its partial derivatives and combinatorial factors
related in a recursive way. For the case of holomorphic
function, f(z,x) of complex variables with x = (x1, x2) and
z = 0 a m-multiple root at (x1, x2) = (0, 0) the computation
is given as follows. The coefficients wi (5) are analytic,
wi(0, 0) = 0 and can expressed as convergent power series:

wi(x1, x2) =

∞∑
h1+h2=1

1

h1!h2!
wi,hx

h1
1 xh2

2 ,

where h = (h1, h2). It is not difficult to see that the
coefficients wi,h can be computed by means of the following
partial derivatives

wi,h =
∂h1+h2wi

∂xh1
2 ∂xh2

1

∣∣∣∣∣
(0,0)

.

Since the analytic function locally satisfy f = Wb, thus its
partial derivatives satisfy the following recursive relations

wi,h =

i∑
j=0

αijFj,h, (12)

Fj,h = fj,h −
j∑

k=0

∑
h′+h′′=h

c
(
j, k;h′,h′′

)
wk,h′bj−k,h′′ ,

with h′ 6= 0, h′′ 6= 0 and constant coefficients:

αjj :=
m!

j!fm,0
, αij := − m!

fm,0

i−1∑
k=j

fm+i−k,0αkj
(m+ i− k)!

,

c (j, k;h1,h2) :=
j!

(j − k)!

2∏
s=1

(h′s + h′′s )!

h′s!h
′′
s !

,

and for h′ 6= 0, k′ = k +m, bk,h is given by

k!

(m+k)!

fk′,h−m−1∑
j=0

∑
h′+h′′=h

c
(
k′, j;h′,h′′

)
wj,h′bk′−j,h′′

.
Since we are only interested in the leading terms of wi,
namely a first approximation of the Weierstrass polynomial,
we adopt the following notation.
Definition 3.1: Let the natural numbers n

(j)
i , for i ∈

{0, 1, · · · ,m − 1} and j = 1, 2, denote the first nonzero
partial derivative in (z, x1, x2) of f , such that the following
conditions hold

f(0, 0, 0)=
∂if

∂zi
= · · · = ∂i+n

(j)
i −1f

∂zi∂τ
n
(j)
i −1

j

= 0,
∂i+n

(j)
i f

∂zi∂τ
n
(j)
i

j

6= 0,

with derivatives evaluated at (0, 0, 0). For n(j)i =∞ we have
derivatives

∂if

∂zi
= · · · = ∂i+n

′
i−1f

∂zi∂τ
n′i−1
2

= 0,
∂i+n

′
if

∂zi∂τ
n′i
2

6= 0,

evaluated at (z,x) = (0, 0, 1), with n′i ∈ Z≥0.
Leading terms of coefficients wi can be easy found up to
the n(j)i and n′i derivatives, as a first observation we give the
following result.
Proposition 1: Suppose that the Weierstrass polynomial has
first nonzero partial derivative, such that

n
(j)
i > n

(j)
i+1, 0 ≤ i < m and j = 1, 2.

Then, the leading terms of wi(x) are given by

wi(x1, x2) = αi,ifi,(n(1)
i ,0)

x
n
(1)
i

1 + αi,ifi,(0,n(2)
i )
x
n
(2)
i

2 + · · · .
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If n(j)i =∞, we have

wi(x1, x2) = αi,ifi,(n′i,η)x
n′i
1 x

η
2 + · · · .

Remark 3: There may be a case in which

fi,(h1,h2)

∣∣
(0,0,0)

= 0 ∀ h1, h2 ∈ N.

Since wi are analytic functions, this is equivalent to wi(x) ≡
0 for i ≤ i ≤ κ − 1. Thus, according to Theorem 1 f has
the following local structure:

zκ
[
zm−κ + wm−κ(x)zm−κ−1 + · · ·+ wκ(x)

]
b(z,x).

Thus, there are κ-invariant solutions z = 0 for all x. If
such number κ does not exist (i.e., if such situation does not
occur), then κ will be simply defined as κ := 0.

B. The Newton Diagram Method for Two Parameters

Consider the monic pseudo-polynomial f given as

f(z,x) := zm+am−1(x1, x2)zm−1+· · ·+a0(x1, x2), (13)

with ai(x) ∈ C [[x]], such that f(0,0) = 0. The equation
f = 0 can be solved by applying the Newton diagram
method, this is done by taking into account just one variable,
say x1, and proceeding iteratively. We take the point πk as
the order of ak in x1, taking x2 as an element of C ((x2)).
For such a purpose, the following definition will be useful

ρk := ordx1
(ak(x1, x2)) = ord (ak(x1, 1)) . (14)

Then, the Newton Polygon of f(z,x), with respect to x1,
is defined by the lower boundary of the convex hull of the
points (k, ρk) ∈ Π (see, Definition 2.1). In order to apply
the the Newton diagram procedure, according to Section II-
D, the solution z will take the following structure

z(x1, x2) =
∑
i

ci(x2)x
i/d
1 ,

where the coefficient ci(x2), is in general, given by a single
parameter Puiseux series in x2.
1) First Step into the Newton Procedure: Let us suppose that
we have determined the Newton diagram of the Weierstrass
polynomial (13) of f . Since we are dealing with a monic
polynomials, the Newton polygon has a finite number of
segments, each one with a corresponding set of points Π(`)

and rational numbers β` ≥ 0 satisfying

β0 > β1 > · · · > βr.

Therefore, the segments are presented in two possible ways.
The first one corresponds to a Newton polygon with a
horizontal segment with βi = 0, and the second one where
βj > 0 (for i 6= j). In this vein, for 0 ≤ ` < m, the Newton
Diagram Π is given as the set Π = Π′ ∪Π′′:

{(0, ρ0), . . . , (`, 0)}∪ {(`, 0) , . . . , (k, ρk), . . . , (m, 0)} .

Lets take at the first step of the process a horizontal segment
with slope βr = 0. We have the next two propositions:
Proposition 2: Let f(z,x) be a pseudo-polynomial with the
same structure as (13). Suppose that at least one coefficient
ai(x) posses order ρi = 0. Then, the equation P(x1, ξ) = 0
(9) of the corresponding horizontal segment has solutions
ck(x

1/d
2 ) in the form of Puiseux series.

Now, at the first step of the process, the case with negative
slope is considered.
Proposition 3: Assume that f has the same structure than
(13) and assume that the first Newton diagram posses a
segment with negative slope. Then, there exist a change of
variables (z, x1, x2) 7→ (ζ, y1, y2) such that the polynomial
P(y2, ξ) has Puiseux series solutions ck(y

1/d
2 ).

Hence, applying to f the change of variables z = ζ,
x1 = ya11 and x2 = ya22 we get f̃(ζ, y1, y2), which can be
solved. Therefore, solutions z(x1, x2) of f = 0 are obtained
by applying the inverse change of variables to solutions ζ.
The following theorem allow us to use the iterative Newton
procedure described above.
Theorem 3 (See [14].): The iteration of the classical New-
ton Procedure for one variable gives rise to representation
of all the roots of the equation (13) by generalized Puiseux
series with terms xa/d, d ∈ Z+, such that a belong to n-
dimensional, lex-positive strictly convex polyhedral cone.

C. Newton Polygon Algorithm

Let us consider the points π` = (`, ρ`) ∈ Π to get the
Newton polygon, obtaining a finite number of segments with
slopes −βr. Now, taking as a basis the Newton procedure
introduced in Section II-C, we propose the Algorithm 1.

Algorithm 1 Auxiliary Puiseux Series Expansion
Let f(s, τ ) have a critical pair such that s∗ = iω∗ is a m-
multiple root at τ = (τ∗1 , τ

∗
1 ). Consider the initial values as

r := 0, i−1 := κ, j := κ and k := ρκ.

1) Set Er :=
{
`−k
j−i : (i, `) ∈ Π, and i > j

}
;

2) Let βr := max Ej and Π(r) :=
{

(i, `) ∈ Π : βj ≡ k−`
j−i

}
;

3) Set (ir, `r) ∈ Π(r) such that ir ≥ i, ∀(i, `) ∈ Π(r);
4) Set j := ir, mr := ir − ir−1 and r = r + 1;
5) If j < m go to step 1. Otherwise the algorithm ends.

In the Algorithm 1, κ is defined according to Remark 3.
In order to used the iterated Newton diagram procedure we
need to find solutions of the equation P , which can be solved
by the usual Newton diagram method. For this purpose the
input Π of algorithm, has points π` determined by equation
P = 0.

D. Puiseux Series for Quasi-Polynomials with two delays

Since any critical solution (s∗, τ∗1 , τ
∗
2 ) can always be trans-

lated to the origin by appropriate shifts s 7→ s − s∗, τ1 7→
τ1 − τ∗1 , τ2 7→ τ2 − τ∗2 , hereinafter we will assume that
(s∗, τ∗1 , τ

∗
2 ) = (0, 0, 0).
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Proposition 4: Let the quasi-polynomial

f(s, τ ) = p0(s) + p1(s)e−sτ1 + p1(s)e−sτ2 , (15)

with s = 0 a m-multiple root at τ := (τ1, τ2) = (0, 0) and
local representation f(s, τ ) = W (τ )b(s, τ ). Assume that
n
(j)
i = 0 for i = 0, 1, . . . , k. Then, the k + 1 coefficients

of the Weierstrass polynomial W satisfy wm−i(τ ) ≡ 0, i ∈
{0, 1, . . . , k}.
Proposition 5: Let the quasi-polynomial f(s, τ ) have a m-
multiple roots s = 0 at τ = (0, 0), with associated
Weierstrass polynomial W . Assume that

R
(
W,

∂W

∂s

)
= τa11 τa22 U(τ1, τ2) such that U(0, 0) 6= 0,

where (a1, a2) ∈ Z2
≥0 \{0}, U ∈ C{τ1, τ2}. Then, f = 0

posses m−solutions given by a generalized Puiseux series.
The following result gives conditions to have a regular
Newton diagram.
Proposition 6: Let W (s, τ ) be the Weierstrass polyno-
mial of a given quasi-polynomial f(s, τ ). Assume that
for a given `−segment of the Newton diagram, be
β` > 0 its slope with corresponding points Π(`) =
{(k1, ρk1), (k2, ρk2), . . . , (ks, ρks)}. Then, the equation P
can be solved without any change of variables if the leading
terms of the coefficients wki satisfy

wki,(ρki
,ηki

) 6= 0 whenever ηki > ηks , i < s.
Finally, using iterated Newton diagram procedure together
with the Weierstrass polynomial of the quasi-polynomial
f(s, τ ), we can find the leading terms of the power series
solutions.
Proposition 7: Let s∗ = iω∗ be a m−multiple root of
f(s, τ ) at τ ∗ = (τ∗1 , τ

∗
2 ). Assume that κ = 0 and r, βj ,

(ij , `j), mj and Π(j), for j = 0, 1, . . . , r − 1 are given by
the Algorithm 1. Then, at τ = τ ∗ the m−zeros of f(s, τ )
can be expanded as

sjσ(τ )=iω∗+cjσ(τ2) (τ1−τ∗1 )
βj+o

(
|τ1−τ∗1 |

βj |τ2− τ∗2 |
β′j
)
,

for j = 0, 1, . . . , r− 1, σ = 0, . . . ,mj and m = m0 + · · ·+
mr−1. For βj > 0 the coefficients cjσ(x2) are roots of the
polynomial:

Pj(ξ, x2)=

ij∑
k=ij−1

w
k,(n

(1)
k ,n′k)

τ
n′k
2 ξk−ij−1,

(
k, n

(1)
k

)
∈Π(j),

when βr−1 = 0, the coefficients are given by the solution of

Pj(ξ, x2)=

ij∑
k=ij−1

w
k,(0,n

(2)
k )
τ
n
(2)
k

2 ξk−ij−1, (k, 0)∈Π(r−1)

where n(1)k , n(2)k , n′k are given by the first nonzero partial
derivatives of Definition 3.1; the constant terms wk,(n,η) ∈ C
are computed using (12).

E. Splitting Properties

The main goal of this subsection is to explore some qualita-
tive properties of the solutions s(τ ) of the quasi-polynomial
f around the m−multiple critical pair (0,0). The solution
curve C ∈ C3, defined by the equation f = 0, is composed
of m generalized Puiseux series solutions. These solutions
can be arranged in r−branches, given as

sjσ(τ ) = cjστ
βj

1 τ
β′j
2 + o

(
|τ1|βj |τ2|β

′
j

)
, (16)

with σ = 0, . . . ,m′j − 1 and j = 0, . . . , r − 1. The leading
terms have exponents defined by βj = p/mj , β′j = q/m′j ,
with p, q ∈ Z≥0. Each branch has multiplicity mj = m′0 +
m′1 + · · ·+m′`, for some ` ∈ Z≥0 such that m = m0 +m1 +
· · ·+mr−1. In this vein, we have the following definition.
Definition 3.2: We say that there is a Completely Regular
Splitting (CRS) property of the solution s∗ = 0 at τ ∗ = 0
if cjσ 6= 0, and p · q ≤ 1, ∀j. For the Regular Splitting (RS)
property, some of the coefficients cjσ for which mj = 1 may
be equal to zero. In the remaining cases of the coefficient cjσ
we say that Non Regular Splitting (NRS) property is present.
We have the following proposition.
Proposition 8: Let f(s, τ ) be a quasi-polynomial with s∗ =
iω a m−multiple root at τ ∗ = (τ∗1 , τ

∗
2 ) such that satisfy

Proposition 5. Suppose that βj , mj , for j = 0, 1, · · · , r −
1 are given by Algorithm 1. Then, the following relations
holds:

1) if (mj ·βj) ·
(
m′j ·β′j

)
≤ 1 ∀j ∈ {0, 1, . . . , r − 1},

then the solution (iω, τ ∗) has the CRS property;
2) if the pairs (mk, βk) that do not fulfill 1), satisfy

βk ≥ mk ≡ 1, then the solution (iω, τ ∗) has the
RS property;

3) for the remaining cases of βj , the solution (iω, τ ∗)
has the NRS property.

Remark 4: It should be mentioned that the Definition 3.2
takes into account the behavior of m− κ solutions, without
considering the κ−invariant solutions.

IV. NUMERICAL EXAMPLES

In order to illustrate the proposed approach, let us consider
the following numerical examples.
Example 4.1: Consider the following quasi-polynomial

f(s, τ )=
(
s2−2s+1

)
−2e−sτ1 +2πse−sτ2 +e−2sτ2 , (17)

with τ ∗ = (1, π), we have a triple root at s = 0. In order
to apply the proposed results, let us consider f̃(s, τ ) :=
f(s, τ1 + 1, τ2 + π). Now, according to the Weierstrass
Preparation Theorem, the local behavior around the solution
0 of f̃ is captured by the solutions of

W (s, τ ) = s3 + w2 (τ ) s2 + w1 (τ ) s+ w0 (τ ) .

Considering Definition 3.1, we take the first partial deriva-
tives of f̃ . We have that n(1)0 = n

(2)
0 = ∞, for h1 =

(1, 0), h2 = (0, 1) we get the natural numbers n(j)1 deter-
mined by
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f1,hj = (−1)j+12 ⇒ n
(j)
1 = 1, j = 1, 2.

Similarly, for n(j)2 we have that

f2,h1
= −4, f2,h2

= 4π ⇒ n
(j)
2 = 1.

Applying Proposition 4 we have that w0 ≡ 0. Proposition 1
allows to find the leading terms given by

w1(τ ) =
6

1− π3
τ1 −

6

1− π3
τ2 + · · · ,

w2(τ ) =
−3
(
3 + 4π3 (π − 1)

)
2 (π3 − 1)

2 τ1 +
3 (4π − 1)

2 (π3 − 1)
τ2 + · · · .

Next, according to (14), the order with respect to τ1 of wi(τ )
define the set of points Π′′ = {(1, 0), (2, 0), (3, 0)}. Hence,
applying Algorithm 1, we derive the results summarized in
Table I.

TABLE I
RESULTS SUMMARY FOR THE QUASI-POLYNOMIAL (17).

Initial Data Algorithm Output

m = 3, κ = 1. ρ1 = 0 r = 1, m0 = 2, β0 = 0

Π = {(1, 0), (2, 0), (3, 0)} Π
(0)

= {(1, 0), (2, 0), (3, 0)}

From Table I we can observe that the Newton polygon has
an horizontal slope with β0 = 0. Thus, by considering
Proposition 7, we need solve the polynomial equation

P0(ξ, τ2) := ξ2 + w2,(0,1)τ2ξ + w1,(0,1)τ2 = 0,

and by Proposition 6 we know that there is no need of change
of variables. Taking as input Π = {(0, 1), (1, 1), (2, 0)}, we
obtain Table II from the Newton polygon algorithm.

TABLE II
RESULTS SUMMARY FOR THE QUASI-POLYNOMIAL (17).

Initial Data Algorithm Output Z := {z ∈ C : Pj(ξ) = 0}

m′ = 2, κ = 0, ρ0 = 1 r = 1, m′0 = 2 β′0 = 1/2 P0(ξ) := ξ2 + 6
1−π3

Π = {(0, 1), (1, 1), (2, 0)} Π
(0)

= {(0, 1), (2, 0)}
{
c0,σ = ±

√
6

1−π3

}

Since κ = 1, there is an invariant root at s = 0. The leading
terms of solutions are given by

s0,σ(τ ) = ±
√

6

1− π3
(τ2−π)1/2+o

(
|τ1−1| 12 |τ2−π|

1
2

)
,

where σ ∈ {0, 1}. We can see that the solutions (0, 1, π)
splits in one invariant roots s0 and two solutions such that
β0 ·m1 = 1, thus by Proposition 8, we know that the solution
possess the CRS property.
Example 4.2: Lets consider the quasi-polynomial f(s, τ ) =
p0(s) + p1(s)e−sτ1 + p2(s)e−sτ2 where

p0(s) = s5+s4+
4 + π

2
s3+2s2+

2 + π

2
s+2, (18a)

p1(s) = 1, p2(s) = 2s4+4s2 + 2. (18b)

For τ ∗ = (π, 1), f has a double root at s = i. With the aim of
applying the proposed methodology, let us shift from (i, π, 1)
to the origin, obtaining f̃ ′. We find that the first nonzero
partial derivatives of the quasi-polynomial at (0, 0, 0) are
given by

f0,(1,0) = i ⇒ n
(1)
0 = 1, f0,(0,n) = 0⇒ n

(2)
0 =∞,

f1,(1,0) = 1− iπ ⇒ n
(1)
1 = 1, f1,(0,n) = 0⇒ n

(2)
1 =∞.

Hence, by Proposition 1, we have that ρj = n
(1)
j for j = 1, 2.

The Newton diagram is given by Π = {(0, 1), (1, 1), (2, 0)}.
Table III summarizes the results deriving from Algorithm 1.
Since coefficient w1 is not over the Newton polygon, follow-
ing Proposition 1, we compute the leading term of wi(τ ),
as

w0(τ ) =
−2i

(8 + π2) + i(8− 3π) + 16e−i
τ1 + · · · .

TABLE III
RESULTS SUMMARY FOR THE QUASI-POLYNOMIAL (18).

Initial Data Algorithm Output Z := {z ∈ C : Pj(ξ) = 0}

m = 2, κ = 0. ρ0 = 1 r = 1, m0 = 2, β0 = 1/2 P0(ξ) := ξ2 + w0,(1,0)

Π = {(0, 1), (1, 1), (2, 0)} Π
(0)

= {(0, 1), (2, 0)}
{
c0,σ = ±√w0,(1,0)

}

From the algorithm output, we get a segment with slope
β0 = 1/2. According to Proposition 7 we need to solve:

P(ξ) = ξ2 − 2i

(8 + π2) + i(8− 3π) + 16e−i
= 0,

for σ ∈ {0, 1}, the solutions are given by

s0,σ(τ )=i±
√

2i3/2√
(8+π2)+i(8−3π)+16e−i

(τ1−π)1/2+

o
(
|τ1 − π|

1
2 |τ2 − 1| 12

)
.

Since β0 · m0 = 1, Proposition 8 implies that the solution
(i, π, 1) has the CRS property. This behavior is illustrated in
Figure 3.

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
ℑ(s)

0.9

0.95

1

1.05

1.1
ℜ(s)

s0,1(τ), τ1<π, τ2<1

s0,0(τ), τ1<π, τ2<1

Fig. 3. Root locus of quasi-polynomial f (s, τ ) (18) around (i, π, 1).

Example 4.3: For our final example, let us consider a special
case of a model of population dynamics (see [16]), with two
distributed delays such that the characteristic functions is
given by
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f(s, τ1, τ2) = s− a1− e−sτ1
s

− c1− e−sτ2
s

, (19)

with positive parameters a = −0.214104, b = −0.996801.
At τ ∗ ≈ (3.84003026849, 10.44866732901), f posses a
double root at s∗ = i. We make a change of variable in
order to shift the critical point to the origin, obtaining f̃ .
In order to compute the associated Weierstrass polynomial
W (s, τ ) = s2 +w1(τ ) +w0(τ ), we consider as a first step,
the first nonzero partial derivatives given in Definition 3.1,

f0,(1,0) 6= 0⇒ n
(1)
0 = 1, f0,(0,1) 6= 0⇒ n

(2)
0 = 1,

f1,(1,0) 6= 0⇒ n
(1)
1 = 1, f1,(0,1) 6= 0⇒ n

(2)
1 = 1.

Next, by means of Proposition 1, we are able to compute the
first terms wi(τ ) of W , as follows:

w0(τ ) = ατ1 + βτ2 + · · · ,

w1(τ ) = γτ1 + δτ2 + · · · ,

with α = (−0.0231801 + 0.0439373i), β =
(0.00397688−0.0245988i), γ = (0.0105549+0.0292551i),
δ = (−0.0359858 + 0.150344i). Applying Algorithm
1, to the Newton diagram Π = Π′

⋃
Π′′ =

{(0, 0), (0, 1), (1, 0), (1, 1), (2, 0)}, we derive the results
summarized in Table IV.

TABLE IV
RESULTS SUMMARY FOR THE QUASI-POLYNOMIAL (19).

Initial Data Algorithm Output

m = 2, κ = 0. ρ0 = 0 r = 1, m0 = 2, β0 = 0

Π = Π′
⋃

Π′′ Π
(0)

= {(0, 0), (1, 0), (2, 0)}

By Proposition 7 the solutions of the polynomial

P(ξ) = ξ2 + w1,(0,1)ξ + w0,(1,0)

determine the leading terms of the solutions. Taking into
consideration the Newton diagram Π

(0)

, we obtain Table V.

TABLE V
RESULTS SUMMARY FOR THE QUASI-POLYNOMIAL (19).

Initial Data Algorithm Output Z := {z ∈ C : Pj(ξ) = 0}

m = 2, κ = 0. ρ0 = 0 r = 1, m0 = 2, β0 = 0 P0(ξ) := ξ2 + w0,(0,1)

Π = {(0, 1), (1, 1), (2, 0)} Π
(0)

= {(0, 1), (2, 0)}
{
c0,σ = ±√w0,(0,1)

}

Thus, for σ = {0, 1}, the solutions are given by

s0,σ(τ )=±(0.1202− 0.1023i)(τ2−τ∗2 )1/2+

o
(
|τ1 − τ∗1 |

1
2 |τ2 − τ∗2 |

1
2

)
,

by Proposition 8 the solutions posses the CRS splitting
property.

V. CONCLUDING REMARKS

In this paper, we have considered some issues concerning
the asymptotic behavior of multiple critical roots for quasi-
polynomials with two delays. By means of the Weierstrass
polynomial, the proposed approach is based on an iterative
Newton diagram method which can be effectively applied to
find the leading terms of power series solutions expressed as
a generalized Puiseux series. Finally, the splitting properties
of a given solution have been described by means of CRS,
RS and NRS properties in order to get some insights about
its geometric behavior.
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