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Abstract— In this paper we consider some issues in modeling
and approximation of composite control systems defined by
coupled partial differential equations and ordinary differential
equations. Although these systems are motivated by applications
to thermal management systems, the fundamental issues occur
in many hybrid systems of subsystems. We establish a well-
posedness result and provide a short discussion of how the
problem formulation can impact the choice of a specific nu-
merical approximation. In particular, the form of the coupling
can impact the choice of finite volume, finite element or higher
order schemes and their convergence properties. Examples are
given to illustrate the ideas.

I. INTRODUCTION AND MOTIVATION

This paper is concerned with approximation of composite
(and hybrid) control systems. The motivation comes from
modeling and control of vapor compression systems (VCS)
(see [1], [2], [3], [4], [5], [6]). As illustrated in Figure 1,
VCSs are composite systems of interconnected components
(compressor, HX1, expansion valve, HX2 and actuators). The
component models for the thermal fluid systems that define
the heat exchangers (HX1, HX2) are partial differential
equations (PDEs) while the other two components (actu-
ator/compressor and expansion valve) are typically mod-
eled by (finite dimensional) ordinary differential equations
(ODEs) or by empirical maps. Thus, when these component
models are connected together to produce a VCS system, this
system is modeled by interconnected ODE-PDE-ODE-PDE
equations. In particular, outputs of the ODEs that govern
the actuator dynamics drive the PDEs that govern the HX1
dynamics through the boundary conditions. In turn, outputs
at the boundary of the PDEs that govern the HX1 dynamics,
drive the ODEs that describe the expansion valve dynamics
and this pattern repeats as one moves around the CVS loop.

These boundary inputs and boundary outputs are inter-
actions defined at the boundary of the spatial domains and
hence are not defined by bounded (continuous) operators.
The counter example on pages 144–145 in the Chen and
Grimmer paper [7] illustrates that even the simplest “un-
bounded composition” of two well-posed infinite dimen-
sional linear systems may fail to be well-posed. Thus,
establishing the well-posedness of coupled infinite and finite
dimensional component models requires care. In addition,
there are “non-standard” approximation issues that need to
be considered when the composite system model is to be
used for optimization, control and design. Thus, problems
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Fig. 1. A Basic VCS

related to well-posedness, developing convergent approxi-
mations that also preserve basic properties such as stability
(stabilizability, controllability) and numerical algorithms for
optimization and control of composite infinite dimensional
systems need to be addressed. In this paper we focus on
a well-posedness problem, but we also provide a short
discussion of some issues that arise in the development of
numerical schemes for approximating composite systems.

Example 1.1: The following simple example from [8]
illustrates that composing control systems in certain ways
can produce systems with undesirable properties. Let

ẏ(t) = a0y(t)+b0v(t) (1)

d
dt

[
z1(t)
z2(t)

]
=
[

0 1
0 0

][
z1(t)
z2(t)

]
+
[

0
1

]
u(t). (2)

Note that if b0 6= 0, then both (1) and (2) are controllable. If
one connects the systems by setting

v(t) = Hz(t) =
[

h1 h2
][ z1(t)

z2(t)

]
,

then the composite system is given by

d
dt

 y(t)
z1(t)
z2(t)

=

 a0 −b0h1 −b0h2
0 0 1
0 0 0

 y(t)
z1(t)
z2(t)

 (3)

+

 0
0
1

u(t).

If a0 = b0 = 1 and H =
[

h1 h2
]
=
[
−1 1

]
, then the

23rd International Symposium on Mathematical Theory of Networks and Systems
Hong Kong University of Science and Technology, Hong Kong, July 16-20, 2018

51



0x =x L= − x

1 1

0

( ) ( ) ( )
(0)

w t w t u t
w w

= +
=

A B

11 ( )( ) tv t w= C

0( , ) ( , ) ( , ),   (0, ) ( )t x t x f t x x x
t x
θ θ θ θ∂ ∂

= + =
∂ ∂

1( ,0) ( )v ttθ =

2 22

0

( ) ( ) (
(0)

)vt ttη η
η η

= +
=

A B

2 ( , )( ) Lv t tθ= −

( )u t

Fig. 2. A Simple Hybrid System

composite system

d
dt

 y(t)
z1(t)
z2(t)

=

 1 1 −1
0 0 1
0 0 0

 y(t)
z1(t)
z2(t)


+

 0
0
1

u(t)

is not controllable. In fact this composite system is not even
stabilizable!

Observe that the composite system above has the form

d
dt

[
y(t)
z(t)

]
=
[

a0 F
0 A1

][
y(t)
z(t)

]
+
[

0
1

]
u(t),

where F = b0H and

A1 =
[

0 1
0 0

]
.

A similar structure occurs in modeling of thermal-fluid sys-
tems and other multi-discipline infinite dimensional systems.
Even in the case where all the component models are linear,
establishing well-posedness of interconnected systems can be
nontrivial. We focus on a simple interconnected linear system
of the type depicted in Figure 2 to illustrate the issues.

II. AN ODE DRIVING A PDE
Consider a problem where an ODE “drives” a PDE

through the boundary. If θ(t,s) represents the convection
of temperature in a fluid moving from right to left, then the
simplest linear model is given by

θt(t,s) = θs(t,s), −L < s < 0, (4)
θ(t,0) = v1(t). (5)

As noted in [9], [10], [11], a change of variables
ω(t,s) = θ(t,s)− v1(t) produces

ωt(t,s) = ωs(t,s)− v̇1(t), −L < s < 0, (6)
ω(t,0) = 0. (7)

Let
ẇ(t) = Aaw(t)+Bau(t) (8)

with Aa a n×n and Ba an n×m matrix, respectively. Here,
(8) represent actuator dynamics with output

v1(t) = Cw(t). (9)

Since
v̇1(t) = Cẇ(t) = C [Aaw(t)+Bau(t)] ,

the composite system becomes

ωt(t,s) = ωs(t,s)+ [−CAa]w(t)+ [−CBa]u(t) (10)
ẇ(t) = Aaw(t)+Bau(t). (11)

Let X = L2(−L,0), Y = Rn and define the operators F :
Rn→ X , B1 : Rm→ X by [Fw] (s)≡ [−CAa]w (a constant
function of s) and B1 = [−CBa], respectively. The abstract
version of this system can be written as

d
dt

[
ω(t)
w(t)

]
=
[

A0 F
0 Aa

][
ω(t)
w(t)

]
+
[

B1
Ba

]
u(t), (12)

where A0 is defined on the domain

D(A0) = H1
R(−L,0) =

{
φ(·) ∈ H1(−L,0) : ϕ(0) = 0

}
by

A0φ(·) = φ
′(·).

Note that F is a bounded linear operator on Rn, [A0]−1 exists
and (

[A0]−1
φ(·)

)
(s) =

∫ s

0
φ(τ)dτ

is bounded (compact). Moreover, if we set FR , [A0]−1F ,
then

FRw = [A0]−1Fw =
∫ s

0
[−CAa]wdτ

= (s) [−CAa]w ∈ D(A0)

and FR maps all of Rn into D(A0). Observe that (at least
formally) A can now be factored as the product

A =
[

A0 F
0 Aa

]
=
[

A0 0
0 Aa

][
IL2 FR
0 In

]
.

We will be able to apply part (a) of Theorem 5 and conclude
that the composite system (12) is well-posed (see also [9],
[10], [11]).

III. PRODUCT SPACE FORMULATIONS

The previous two examples fall into a class of problems
with the following structure. Assume that X and Y are Hilbert
spaces and let Z = X×Y be the product space with standard
inner product. Assume that A0 : D(A0)⊆ X → X generates
a C0-semigroup on X and likewise that A1 : D(A1)⊆ Y → Y
generates a C0-semigroup on Y . Let F : D(F)⊆Y → X and
consider the composite operator A : D(A )⊆ Z→ Z defined
by

A

[
x
y

]
=
[

A0 F
0 A1

][
x
y

]
=
[

A0x+Fy
A1y

]
. (13)
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Let AD : D(AD) ⊆ Z→ Z be the diagonal operator defined
by

AD =
[

A0 0
0 A1

]
,

with domain D(AD) = D(A0) × D(A1). We assume that
D(A1) ⊆ D(F). Moreover, even one assumes that F is
bounded one must impose certain restrictions on these op-
erators to precisely define the composite operator A and its
domain D(A ) (see [12] and [13]).

The results by Vinter and Zabczyk provide a simple test of
well-posedness for connected systems. The following results
follow from Theorem 1 in [13] and the modifications in [14]
and [7] .

Theorem 1: Let A : D(A ) ⊆ Z → Z generate a C0-
semigroup on the Hilbert space Z and assume P is a
bounded linear operator on Z. If P is invertible and
F = I −P satisfies F (Z)⊆ D(A ), then,

(1A) The operator A P with domain

D(A P) = {z ∈ Z : Pz ∈ D(A )}

generates a C0-semigroup on Z.
(1B) The operator PA with domain D(PA ) = D(A ) gen-

erates a C0-semigroup on Z.

Theorem 2: Let Z = X ×Y be a product space of Hilbert
spaces and AD : D(A )⊆ Z→ Z be a “diagonal operator”

AD=
[

A0 0
0 A1

]
,

where A0, A1 with domains D(A0) ⊆ X = and D(A1) ⊆ Y ,
respectively. Assume F̂ : Y → X is a bounded linear operator
and A0 and A1 generate a C0-semigroups on X and Y ,
respectively. If P is the bounded linear operator defined
by

P =
[

I F̂
0 I

]
,

then,
(2A) The operator A P with domain

D(A P) = {z ∈ Z : Pz ∈ D(A )}

generates a C0-semigroup on Z.
(2B) If the operator F̂A1 has a bounded linear extension

to all of Y , then PA with domain D(PA ) = D(A )
generates a C0-semigroup on Z.

If F : D(F) = Y → X is a bounded linear operator (as in
the previous two examples), then (13) can be written as

A

[
x
y

]
=
[

A0x
A1y

]
+
[

Fy
0

]
,

with D(A ) = D(A0)×D(A1). The assumption that F is
bounded implies by standard perturbation theory that A :
D(A )⊆ Z→ Z generates a C0-semigroup on Z. When F is
not bounded one needs another approach to well-posedness.
This case arises when the output to a PDE occurs at the

boundary and this output drives an ODE. In the next section
we use the simple model problem to illustrate this point.

IV. A PDE DRIVING AN ODE

Let the spatial domain be (−L,0) and again assume the
convection of the temperature is from right to left so that

θt(t,s) = θs(t,s), −L < s < 0, (14)
θ(t,0) = 0. (15)

Given an initial condition ϕ(·) ∈ L2(−L,0)

θ(0,s) = ϕ(s), −L < s < 0, (16)

uniquely determines the solution T (t,s). Consider a simple
scalar ODE system

η̇(t) = a1η(t)+b1ξ (t)+b2u(t), (17)
η(0) = η0, (18)

and note that both systems are well-posed. Now assume that
the input to the ODE system is given as the output to the
PDE system at the left boundary so that

ξ (t) = θ(t,−L) (19)

The resulting composite system becomes

η̇(t) = a1η(t)+b1θ(t,−L)+b2u(t) (20)
θt(t,s) = θs(t,s), −L < s < 0. (21)

As before let X = R, Y = L2(−L,0) and define A1 on the
domain

D(A1) = H1
R(−L,0) =

{
ϕ(·) ∈ H1 : ϕ(0) = 0

}
(22)

by
A1φ(·) = ϕ

′(·) (23)

and F : H1(−L,0)→ R by

Fϕ(·) = b1ϕ(−L). (24)

The abstract version of the composite system (20)-(21) has
the form

d
dt

[
η(t)
θ(t)

]
=
[

a1 F
0 A1

][
η(t)
θ(t)

]
+
[

b2
0

]
u(t).

Observe that, unlike in Section II, the operator F defined
by (24) is not a bounded linear operator on X = L2(−L,0).
Moreover, if the coefficient a1 6= 0 and we set
FR , [a1]−1F , then (again formally)

A =
[

a1 F
0 A1

]
=
[

a1 0
0 A1

][
I FR
0 I

]
. (25)

However, again FR is not a bounded linear operator on X =
L2(−L,0) so Zabczyk’s framework does not apply directly
to this problem.

To set up a framework to address this question we follow
the approach in [13]. Let

AD =
[

a1 0
0 A1

]

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

53



be the diagonal operator with domain D(A ) = R×D(A1).
It is well known that there is a function g ∈H1(−L,0) such
that if ϕ(·) ∈ H1 and ϕ(0) = 0, then

b1ϕ(−L) =
∫ 0

−L
g(s)ϕ(s)ds+

∫ 0

−L
g′(s)ϕ ′(s)ds.

Following the approach in [13] (see page 531), one defines
the bounded linear operator E : L2(−L,0)→ R by

E(ϕ(·)) =
∫ 0

−L
g(s)

[∫ s

0
ϕ(τ)dτ

]
ds+

∫ 0

−L
g′(s)ϕ(s)ds.

Note that if ϕ(·) ∈ D(A1), then

E(ϕ ′(·)) =
∫ 0

−L
g(s)

[∫ s

0
ϕ
′(τ)dτ

]
ds

+
∫ 0

−L
g′(s)ϕ ′(s)ds

=
∫ 0

−L
g(s) [ϕ(s)−ϕ(0)]ds

+
∫ 0

−L
g′(s)ϕ ′(s)ds

=
∫ 0

−L
g(s)ϕ(s)ds+

∫ 0

−L
g′(s)ϕ ′(s)ds

= b1ϕ(−r).

Thus, we have a factorization of A into

A =
[

I E
0 I

][
a1 0
0 A1

]
. (26)

The operator

P =
[

I E
0 I

]
is a bounded linear operator and

A = PA D.

Moreover, P is invertible and since R is finite dimensional
E : L2(−L,0)→ R maps all of L2(−L,0) into the domain
of a1. It now follows from Theorem 2-(2B) that A = PA D
generates a generates a C0-semigroup on Z. Combining these
observations we one has the following result.

Theorem 3: The operator

A

[
η

ϕ(·)

]
=
[

a1 F
0 A1

][
a1η +b1ϕ(−L)

ϕ(·)

]
(27)

with domain

D(A ) =
{[

η

ϕ(·)

]
: ϕ(·) ∈ H1, ϕ(0) = η

}
(28)

generates a C0-semigroup on Z = R×L2(−L,0).

The proof above makes use of the approach in Vinter’s
paper [12] and ideas in Zabczyk’s paper [13]. However, what
is interesting here is that the problem arises from the analysis
of a system where the output of a simple PDE drives an
ODE. The Vinter and Zabczyk work was motivated by delay
differential equations and there is an interesting connection
between the two problems.

A. Connection to Delay Differential Equations

Consider the ordinary delay differential equation

ż(t) = a1z(t)+b1z(t−L), (29)

with initial data

z(0) = η , z(s) = ϕ(s), −L < s < 0. (30)

It is well known (see [15]) that (29) - (30) defines a
dynamical system on the state space R×L2(−L,0) and the
generator of this dynamical system is the operator defined
by

A

[
η

ϕ(·)

]
=
[

a1η +b1ϕ(−L)
ϕ ′(·)

]
(31)

with domain

D(A ) =
{[

η

ϕ(·)

]
: ϕ(·) ∈ H1(−L,0),ϕ(0) = η

}
(32)

Observe that the operator defined by (27) - (28) in the
previous Theorem is exactly the same. Thus, the original
interconnected PDE-ODE system is equivalent to an ordinary
delay differential equation.

Remark 4: These types of problems were considered in
the papers [9], [10], [11] where issues of well-posedness and
numerical approximations were discussed when the actuator
dynamics are included. Vinter [12] and Zabczyk [16] were
among the first to observe that including finite dimensional
actuator dynamics in boundary control problems produces
special composite systems defined on product spaces and
this structure could be exploited to establish well-posedness
of the composite system. However, if one employs more
complex (infinite dimensional) models of the actuators com-
ponents, then additional issues occur. Recently this structure
has also been exploited to develop numerical approximations
for specific classes of actuator dynamics (see [17], [18]).
As noted above, when the output to the PDE system drives
a finite dimensional ODE through boundary outputs the
composite system is more complex and connecting such
systems needs to be done with care. In particular, these types
of interconnected systems lead to the case where the operator
F : D(F)→X is not a bounded linear operator. This is clearly
illustrated in Section IV above. This situation occurs in a
VCS system when the output to a PDE system drives an
ODE system as, for example, when the output to the HX1 (a
PDE system) drives the expansion valve (typically modeled
by an ODE system).

Observe that if [A0]−1 exists, then A can be factored
(again formally) as a product

A =
[

A0 F
0 A1

]
=
[

A0 0
0 A1

][
IX [A0]−1F
0 IY

]
. (33)

If one now includes control inputs, say with a finite
number of controllers, then B : Rm→ Z of the form

B =
[

B1
B2

]
. (34)
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Thus, the control system becomes

z(t) = A z(t)+Bu(t). (35)

In view of the examples above if we consider only the
case where B : Rm → Z is a bounded (hence compact)
linear operator, then well-posedness of the control system
is determined by the coupled system operator A . Thus, we
focus on the system operator.

However, as illustrated in Section IV, we need to consider
the case where the connection operator F : D(F)⊆Y → X is
not bounded. We are interested in two fundamental questions:

1) When is the composite system well-posed?
2) How do we approximate the composite system to

ensure convergence and dual convergence for control
design?

In the following section we provide a simple test for
certain cases.

V. WELL-POSEDNESS

One could apply standard (additive) perturbation results
to address well-posedness (see Chapter 3 in Kato [19]) by
requiring some type of A - boundedness on the operator F .
Another approach is to impose some special structure on the
system to take advantage of Zabczyk’s results. This approach
was used in [17], [18] where the composite system included
actuator dynamics with delays.

If one assumes that 0 ∈ ρ(A0) so that [A0]−1 is defined
and bounded on all of X , then

A =
[

A0 F
0 A1

]
=
[

A0 0
0 A1

][
I FR
0 I

]
where

FR = [A0]−1F. (36)

Likewise, if 0∈ ρ(A1) so that [A1]−1 is defined and bounded,
then

A =
[

A0 F
0 A1

]
=
[

I FL
0 I

][
A0 0
0 A1

]
where

FL = F [A1]−1. (37)

The problem now becomes a multiplicative perturbation
problem with a long history (see [20]) and suitable for
applying Zabczyk’s theorems 1 and 2 above. As a special
case for bounded operators F : D(F) → X , we have the
following result.

Theorem 5: If (a) 0∈ ρ(A0) and FR = [A0]−1F is bounded
or (b) 0∈ ρ(A1) and FL = F [A1]−1 has a bounded extension
to all of Y , then A generates a C0-semigroup on Z.

Proof: Consider case (a) and set FR = [A0]
−1 F . It follows

that

P =
[

I FR
0 I

]

is bounded and defined on all of Y . Moreover, P is
invertible with inverse

P−1 =
[

I −FR
0 I

]
.

The operator

F = IZ−P =
[

0 FR
0 0

]
clearly maps all of Z into the domain of AD since

F

[
x
y

]
=
[

[A0]
−1 Fy
0

]
∈ D(AD).

Applying Theorem 1-(1A) it follows that

A = A DP =
[

A0 0
0 A1

][
I FR
0 I

]
generates a C0-semigroup on Z.

Now consider case (b) and set FL = F [A1]
−1. It follows

that
Q =

[
I FL
0 I

]
and

A = QA D =
[

I FL
0 I

][
A0 0
0 A1

]

Since D(A1) ⊆ D(F) it follows that FL = F [A1]
−1 has a

bounded extension to all of Y. The results now follow from
Theorem 2-(2B). �

VI. IMPLICATIONS FOR NUMERICAL DISCRETIZATION

As illustrated above, one must exercise care in how one
connects components into system level models to ensure
well-posedness. This issue needs to be considered when
developing numerical approximations for the composite sys-
tem.

One may approach the problem of approximating an
operator of the form

A =
[

A0 F
0 A1

]
by first approximating the individual component operators,
say

AN
0 → A0, AN

1 → A1 and FN → F.

Then, an approximation of the composite operator is con-
structed by

A N =
[

AN
0 FN

0 AN
1

]
.

Observe that when the coupling operator F is unbounded
additional care is required in constructing “ good” approxi-
mations. This process is very common and may be described
by composing discretizations of the component models.

However, the boundary conditions for the coupled systems
can be lost or too many boundary conditions can be imposed
with a corresponding loss of well-posedness. In particular,
connecting approximations of the components to obtain a
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system level approximation can produce discretized models
that are not consistent with the system level dynamics.
In particular, coupling a discretization of the hyperbolic
operator A1 to the ODE system will not necessarily produce
a convergent numerical scheme.

One implication of the analysis in the previous section
is the observation that approximation methods developed
for delay equations might be useful in the development of
convergent approximations of coupled PDE-ODE systems.
As observed in Section IV one can decompose the system
operator into

A =
[

I E
0 I

][
A0 0
0 A1

]
and construct convergent approximation schemes for the
(possibly unbounded) operators

AN
0 → A0, AN

1 → A1

and the bounded operators

EN → E.

VII. CONCLUSIONS AND NEXT STEPS

There are two key issues to be considered when connecting
hybrid ODE-ODE models into a system level model. The first
is that establishing well-posedness of such interconnected
systems is not always obvious. In particular, it is important to
identify the correct boundary conditions. Establishing well-
posedness allows for a proper composition of discretized
models and can enable the development of higher order
schemes. Initial results along this line may be found in the
papers [17], [18], [21]. The basic ideas are to use combined
finite element-finite volume methods from [22] and [23] to
construct higher order “DG” type schemes (see [22]). Details
about these schemes can be found in [21], [24].

Finally, we have conducted several computational exper-
iments on the simple examples discussed here and these
numerical results match the conclusions above. We are now
in the process of extending these ideas and computational
algorithms to more realistic systems and these results will
appear in a forthcoming full paper.
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