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Abstract— In this paper we consider 2D behaviors with
periodic image representations and provide conditions under
which a simple method for obtaining state space realizations
by means of 2D periodic (separable) Roesser models can be
applied. For the sake of simplicity we restrict our attention to
the (2, 2)-periodic case.

Index Terms— Periodic 2D systems, image behaviors, real-
izations.

I. INTRODUCTION

The state space realization problem for periodic 1D systems
has been studied by several authors, both in the classical
transfer function or input/output framework [3], [4], [5],
[8], [10] and within the behavioral approach [2]. However,
there are few results available for multidimensional (nD)
systems, [1]. The aim of this paper is to further contribute
to the study of this problem for the particular case of 2D
behavioral systems.

We focus our attention on discrete 2D systems whose
behaviors can be described as the image of special
polynomial operators in the (inverse) 2D shifts with
periodically varying coefficients. Our aim is to obtain
an equivalent description of such behaviors by means of
periodic 2D Roesser state space models of the separable
type, i.e., where one of the states (in our case the horizontal
state) has an evolution which is independent from the other
one (here, the vertical state).

A naive approach would be try to construct the periodic
2D state space realization by combining the invariant state
space realizations of each of the different invariant operators
obtained by “freezing” the coefficients of the original peri-
odic operator. Unfortunately, as we here show, this procedure
does not work for all 2D periodic polynomial operators.
An alternative approach is to construct a lifted invariant
version of the original periodic behavior, obtain an invariant
state space realization by standard procedures, and then
try to obtain a periodic state space realization from the
lifted invariant one. However, this is a very difficult task
[1]. Given this situation, the search for conditions on the
periodically varying polynomial operators that ensure that
the aforementioned naive approach actually works becomes
an interesting question. In this paper we concentrate on the
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(2,2)-periodic case, and give an answer to this question for
a very particular type of 2D periodic polynomial operators
that can be factored as the product of two periodic 1D poly-
nomial operators associated to full column rank polynomial
matrices. However, we conjecture that our main result may
be extended to other cases.

II. 2D PERIODIC IMAGE BEHAVIORS

2D periodic image behaviors are sets of signals that can be
described as the image of a periodically varying polynomial
operator in the inverse 2D shifts, M(Pk+i,Ql+j)(σ

−1
1 , σ−1

2 ),
where P and Q stand for the horizontal and for the vertical
period, respectively. More concretely,

M(Pk+i,Ql+j)(σ
−1
1 , σ−1

2 ) = M(i,j)(σ
−1
1 , σ−1

2 ),

for i = 0, . . . , P−1, j = 0, . . . , Q−1, l, k ∈ N0, and where,
for a function w defined over Z2, the action of the inverse
2D shifts is given by (σ−1

1 w)(i, j) = w(i − 1, j) (for the
horizontal direction) and (σ−1

2 w)(i, j) = w(i, j−1) (for the
vertical direction).
We consider a special class of periodically varying 2D
polynomial operators M(Pk+i,Ql+j)(σ

−1
1 , σ−1

2 ) that can be
factored as:

M(Pk+i,Ql+j)(σ
−1
1 , σ−1

2 ) = VQl+j(σ
−1
2 )HPk+i(σ

−1
1 ),

where HPk+i(σ
−1
1 ) and VQl+j(σ−1

2 ) are periodically varying
1D polynomial operators in the horizontal and in the vertical
directions, with period P and Q, respectively, i.e., for k ∈ N0

HPk+i(σ
−1
1 ) = Hi(σ

−1
1 ), i = 0, . . . , P − 1,

and, for l ∈ N0,

VQl+j(σ
−1
2 ) = Vj(σ

−1
2 ), j = 0, . . . , Q− 1.

Moreover, for the sake of simplicity we take P = Q = 2.

Thus our object of study are behaviors B such that:

B = {w ∈ W : ∃v ∈ V s.t.
w(2k + i, 2l + j) =

(
Vj(σ

−1
2 )Hi(σ

−1
1 )v

)
(2k + i, 2l + j),

k, l ∈ N0, i, j = 0, 1},
(1)

where W and V are the sets of signals
(
Rq
)Z2

and
(
Rp
)Z2

,
respectively, with support in N2

0, and Hi(z
−1
1 ) ∈ Rr×p[z−1

1 ],
Vj(z

−1
2 ) ∈ Rq×r[z−1

2 ], i, j = 0, 1, are polynomial matrices
in z−1

1 and z−1
2 of sizes r×p and q× r, respectively. In this

case(
M(0,0),M(1,0),M(0,1),M(1,1)

)
= (V0H0, V0H1, V1H0, V1H1)
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is said to be a 2D (2,2)-periodic image representation of B.
We assume that the polynomial matrices Hi and Vj have full
column rank (over the corresponding polynomial rings).

III. STATE SPACE REALIZATIONS

Here we focus on the state space realizations of the special
class of 2D periodic image behaviors introduced in the
previous section by means of 2D periodic Roesser models.
In general, this is a nontrivial matter, mainly due to the
fact that a 2D periodic state space realization cannot be
obtained by independently realizing each of the invariant
polynomial operators M(i,j) = VjHi, [1]. However, in this
paper we show that under certain conditions this problem
does not arise, i.e., combining independent realizations of
the invariant operators M(i,j) does yield a 2D periodic
realization of the corresponding 2D periodic image behavior.
Before presenting our result, we first consider the invariant
2D case as well as the periodic 1D case.

A. The invariant 2D case

As is well-known, in the 2D invariant case, a separable
Roesser model realization for a behavior which is the image
of a 2D polynomial operator

M(σ−1
1 , σ−1

2 ) = V (σ−1
2 )H(σ−1

1 )

can be obtained as the series connection of the 1D state space
realizations of H and V . Indeed, if (AH , BH , C̃H , DH) and
(AV , B̃V , CV , DV ) are respectively state space realizations
of H

(
z−1

1

)
and V

(
z−1

2

)
, now regarded as finite impulse

response transfer functions, then the separable Roesser model
Σ = (AH , AV , AV H , BH , BV , CH , CV , D):



σ1x
H(t1, t2) = AHxH(t1, t2) +BHv(t1, t2)

σ2x
V (t1, t2) = AV xV (t1, t2) +AV HxH(t1, t2)

+BV v(t1, t2)

w(t1, t2) = CHxH(t1, t2) + CV xV (t1, t2)
+Dv(t1, t2)

(2)

with AV H = B̃V C̃H , BV = B̃VDH , CH = DV C̃H , and
D = DVDH , is a realization of B = im(M) in the sense
that the signals in B corresponding to v coincide with the
outputs of (2) produced by the same input v with zero
initial conditions, i.e., xH(0, t2) = 0 and xV (t1, 0) = 0,
t1, t2 ∈ N0.

Remark 1: Note that, due to the fact that H and V are
polynomial operators in σ−1

1 and σ−1
2 , respectively, it is al-

ways possible to construct 2D separable Roesser models with
the same input/output behavior as M where the horizontal
state at the point (t1, t2), xH(t1, t2), only depends on the
values of v at (some) points (t1 − τ1, t2), with τ1 ≥ 1, and
the vertical state xV (t1, t2) only depends on the values of v
at (some) points (t1 − τ1, t2 − τ2), with τ1 ≥ 0 and τ2 ≥ 1.
As a consequence, the initial states xH(0, t2) and xV (t1, 0)
corresponding to a signal v ∈ V (which has support in N2

0)

are clearly zero. Here only such models are considered to be
realizations of B = im(M).

In a similar way, under certain conditions, in the 2D periodic
case, a periodic separable Roesser model realization can be
obtained as a series connection of two 1D periodic state space
realizations of the periodic operators H2k+i and V2l+j , i, j =
0, 1. It is therefore important to first analyse the 1D case.

B. The periodic 1D case

A periodic 1D image behavior (with period 2) is a set of
signals B that can be described as:

B = {w ∈ U : ∃` ∈ L s.t. w(2θ + τ) =
(
Mτ (σ−1)`

)
(τ),

θ ∈ N0, τ = 0, 1},
(3)

where σ denotes the 1D shift, U and L are the sets of
signals (Rq)Z and (Rs)Z, respectively, with support in N0,
and Mτ (z−1), τ = 0, 1, are 1D polynomial matrices in
z−1 of suitable size. In this case (M0,M1) is said to be a
2-periodic image representation of B.

On the other hand, given two 1D state space systems Σθ =
(Aθ, Bθ, Cθ, Dθ), θ = 0, 1, with the same state dimension,
we define a 2-periodic 1D state space system Σ1D

per as{
σx(t) = A(t)x(t) +B(t)`(t)

w(t) = C(t)x(t) +D(t)`(t)
, t ∈ Z (4)

where A(·), B(·), C(·), D(·) are periodic functions with pe-
riod 2, such that, for each θ ∈ N0,(

A(2θ), B(2θ), C(2θ), D(2θ)
)

= (A0, B0, C0, D0)

and (
A(2θ + 1), B(2θ + 1), C(2θ + 1), D(2θ + 1)

)
=

= (A1, B1, C1, D1).

The dimension of Σ1D
per is defined as the dimension of the

state vector x. In this case we say that Σ1D
per is obtained

from Σ0 and Σ1, and write Σ1D
per = (Σ0,Σ1).

Moreover, Σ1D
per is a realization of a 2-periodic image

representation (M0,M1) and of the associated 2-periodic
image behavior, if the output w of Σ1D

per that corresponds to
an input ` and zero initial conditions, i.e., x(0) = 0, equals
the trajectory w corresponding to ` according to (3).

As already mentioned, given two realizations Σ0 and
Σ1 of M0 and M1, the periodic state space system
Σ1D

per = (Σ0,Σ1) obtained from Σ0 and Σ1 is in general not
a periodic state space realization of the 2-periodic image
representation (M0,M1), nor of the associated periodic
behavior. However, if the polynomial matrices M0 and M1

have the same column degrees, it is possible to construct
invariant 1D state space realizations Σ0 and Σ1 such that
the 2-periodic state space system Σ1D

per = (Σ0,Σ1) is indeed
a realization of the 1D 2-periodic behavior associated with
(M0,M1). Such realizations are obtained as stated in the
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next proposition, [6], [7].

Recall that the degree of a column is defined as the
maximum of the degrees of its entries. Note that such
degrees are considered for the indeterminate z−1. Therefore,
for instance, z−2 has degree 2.

Proposition 1: Let M
(
z−1
)
∈ Rq×s

[
z−1
]

be a polyno-
mial matrix with rank s and column degrees ν1, . . . , νs. Con-
sider n̄ =

∑s
i=1 νi. Let M

(
z−1
)

have columns mi

(
z−1
)

=∑νi
k=0mk,iz

−k, i = 1, . . . , s, where mk,i ∈ Rq . For i =
1, . . . , s define the matrices

Ai =


0 · · · · · · 0

1
...

. . .
...

1 0

 ∈ Rνi×νi , Bi =


1
0
...
0

 ∈ Rνi ,

Ci =
[
m1,i · · · mνi,i

]
∈ Rq×νi .

Then a state-space realization of M is given by the matrix
quadruple (A,B,C,D) ∈ Rn̄×n̄ × Rn̄×s × Rq×n̄ × Rq×s
where

A =

A1

. . .
As

 , B =

B1

. . .
Bs

 ,
C =

[
C1 · · · Cs

]
, D =

[
m0,1 · · · m0,s

]
=M(0).

In the case where νi = 0 the ith block of A and C are void
and in B a zero column occurs.

Theorem 1: [9] Consider two image representations
M0

(
z−1
)
∈ Rq×s

[
z−1
]

and M1

(
z−1
)
∈ Rq×s

[
z−1
]

with
the same column degrees and let Σi be the realizations of
Mi

(
z−1
)
, i = 0, 1, obtained by Proposition 1. Then, the 1D

periodic state-space system Σ1D
per obtained from Σ0 and Σ1 is

a realization of the periodic image representation (M0,M1)
and of the corresponding 2-periodic 1D image behavior.

C. The periodic 2D case

Let(
M(0,0),M(1,0),M(0,1),M(1,1)

)
= (V0H0, V0H1, V1H0, V1H1)

define a (2,2)-periodic 2D polynomial operator, and
let further ΣHi = (AHi , B

H
i , C̃

H
i , D

H
i ) and ΣVj =

(AVj , B̃
V
j , C

V
j , D

V
j ) be state space realizations of the invari-

ant operators Hi and Vj , i, j = 0, 1, respectively. Assume
that ΣH0 and ΣH1 have the same state dimensions and that the
same happens for ΣV0 and ΣV1 . Combining these realizations
yields the following (2,2)-periodic 2D separable Roesser

state space system Σ2D
per :[

σ1x
H(2k+i, 2l+j)

σ2x
V (2k+i, 2l+j)

]
=

 AHi 0

AV Hij AVj

[xH(2k+i, 2l+j)

xV (2k+i, 2l+j)

]

+

BHi
BVij

 v(2k + i, 2l + j)

w(2k + i, 2l + j) =
[
CHij CVj

] [xH(2k + i, 2l + j)

xV (2k + i, 2l + j)

]
+Dijv(2k + i, 2l + j)

(5)

with AV Hij = B̃Vj C̃
H
i , BVij = B̃Vj D

H
i , CHij = DV

j C̃
H
i , and

Dij = DV
j D

H
i .

Note that for each pair of fixed values of i and j this
peridodic 2D system is an invariant separable 2D state space
system

Σ(i,j) =
(
AHi , A

V
j , A

V H
ij , BHi , B

V
ij , C

H
ij , C

V
j , Dij

)
.

Similar to what happens in the 1D case, we say that Σ2D
per

is obtained from Σ(0,0), Σ(1,0), Σ(0,1) and Σ(1,1) and write
Σ2D

per =
(
Σ(0,0),Σ(1,0),Σ(0,1),Σ(1,1)

)
.

As shown in the following example the 2D (2,2)-
periodic Roesser state space system Σ2D

per =(
Σ(0,0),Σ(1,0),Σ(0,1),Σ(1,1)

)
is not necessarily a realization

of the (2,2)-periodic image representation(
M(0,0),M(1,0),M(0,1),M(1,1)

)
= (V0H0, V0H1, V1H0, V1H1) .

Example 1: Consider the (2-2)-periodic image represen-
tation(
M(0,0),M(1,0),M(0,1),M(1,1)

)
= (V0H0, V0H1, V1H0, V1H1)

with

H0

(
z−1

1

)
= H0

0 +H1
0z

−1
1 +H2

0z
−2
1

=


1 + z−2

1 1 0
z−2

1 1 + z−1
1 1

1 + z−1
1 1 1

1 1 1 + z−1
1

 ,

H1

(
z−1

1

)
= H0

1 +H1
1z

−1
1 +H2

1z
−2
1

=


1 + z−1

1 1 0
1 + z−2

1 1 + z−1
1 1

1 1 + z−2
1 1

0 1 1

 ,

V0

(
z−1

2

)
=
(
1 + z−1

2

)
I4 and V1

(
z−1

2

)
=
(
1 + 2z−1

2

)
I4.

Realizing H0

(
z−1

1

)
as in Proposition 1 we obtain the state-

space realization ΣH0 = (AH0 , B
H
0 , C̃

H
0 , D

H
0 ) with
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AH0 =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 BH0 =


1 0 0
0 0 0
0 1 0
0 0 1



C̃H0 =


0 1 0 0
0 1 1 0
1 0 0 0
0 0 0 1

 DH
0 =


1 1 0
0 1 1
1 1 1
1 1 1

 .
Proceeding in the same way, we obtain a state-space realiza-
tion ΣH1 = (AH1 , B

H
1 , C̃

H
1 , D

H
1 ) for H1

(
z−1

1

)
with

AH1 =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 BH1 =


1 0 0
0 0 0
0 1 0
0 0 0



C̃H1 =


1 0 0 0
0 1 1 0
0 0 0 1
0 0 0 0

 DH
1 =


1 1 0
1 1 1
1 1 1
0 1 1

 .
As for V0

(
z−1

2

)
and V1

(
z−1

2

)
, it is easily seen that they

can be realized by ΣV0 = (AV0 , B̃
V
0 , C

V
0 , D

V
0 ) and ΣV1 =

(AV1 , B̃
V
1 , C

V
1 , D

V
1 ) with

AV0 = 04, B̃
V
0 = CV0 = DV

0 = I4

and
AV1 = 04, B̃

V
0 = DV

0 = I4, C
V
0 = 2I4,

where 04 denotes the 4× 4 zero matrix.

Let us consider, for every t2 ∈ N0,

v(0, t2) =

0
0
1

 , v(1, t2) =

0
0
0

 , v(t1, t2) = 0, t1 ≥ 2.

From (1) it follows that, for l ∈ N0, j = 0, 1,

w(1, 2l + j) =
(
Vj(σ

−1
2 )H1(σ−1

1 )v
)
(1, 2l + j)

=
(
Vj(σ

−1
2 )u

)
(1, 2l + j)

where
u(1, 2l + j) = H0

1v(1, 2l + j) +H1
1v(0, 2l + j)

=


1 1 0
1 1 1
1 1 1
0 1 1


0

0
0

+


1 0 0
0 1 0
0 0 0
0 0 0


0

0
1

=


0
0
0
0


thus

w(1, 2l + j) =


0
0
0
0

 , l ∈ N0, j = 0, 1

or simply

w(1, t2) =


0
0
0
0

 , for t2 ∈ N0.

On the other hand, using (5), we have

w(1, 0) =
[
CH10 CV0

] [xH(1, 0)

xV (1, 0)

]
+D10v(1, 0)

Note that, due to the fact that the initial conditions must be
zero (according to our definition of realization), xV (1, 0) = 0
and xH(0, 0) = 0. Moreover,

xH(1, 0) =
(
σ1x

H
)

(0, 0) = AH0 x
H(0, 0) +BH0 v(0, 0)

=


1 0 0
0 0 0
0 1 0
0 0 1


0

0
1

 =


0
0
0
1

 .
Hence

w(1, 0) = CH10x
H(1, 0) = DV

0 C̃
H
1 x

H(1, 0)

= I4


1 0 0 0
0 1 1 0
0 0 0 1
0 0 0 0




0
0
0
1

 =


0
0
1
0

 ,
i.e., the output w of the 2D (2,2)-periodic Roesser state
space system Σ2D

per corresponding to v is different from the
trajectory w corresponding to v according to (1). �

However, in the next theorem is shown that it is possible to
obtain periodic 2D separable Roesser model realizations for
2D periodic image behaviors (1), by independently realizing
the operators V0, V1, and H0, H1, provided that V0 and V1

have the same column degress and the same happens for
H0 and H1.

Theorem 2: Consider the polynomial operators in σ−1
1

corresponding to the polynomial matrices H0

(
z−1

1

)
∈

Rq×r
[
z−1

1

]
and H1

(
z−1

1

)
∈ Rq×r

[
z−1

1

]
, and assume that

they have the same column degrees. Let ΣHi be the real-
izations of Hi

(
σ−1

1

)
, i = 0, 1, obtained by Proposition 1.

Consider further the polynomial operators in σ−1
2 corre-

sponding to the polynomial matrices V0

(
z−1

2

)
∈ Rr×p

[
z−1

2

]
and V1

(
z−1

2

)
∈ Rr×p

[
z−1

2

]
, and assume that they have

the same column degrees. Let ΣVj be the realizations of
Vj
(
σ−1

2

)
, j = 0, 1, obtained by Proposition 1. Define the

2D periodic Roesser separable model Σ2D
per obtained from

ΣHi and ΣVj as in (5). Then Σ2D
per is a state space realization

of the 2D periodic image behavior B given by (1).
Proof:

Note that since H0(z−1
1 ) and H1(z−1

1 ) have the same
column degrees it follows that the corresponding
realizations ΣHi = (AHi , B

H
i , C̃

H
i , D

H
i ), i = 0, 1, are

such that AH0 = AH1 and BH0 = BH1 . Let us consider
AH := AH0 = AH1 and BH := BH0 = BH1 . By the
same reason the realizations ΣVj = (AVj , B̃

V
j , C

V
j , D

V
j ),

j = 0, 1, are such that AV0 = AV1 and B̃V0 = B̃V1 . Let
AV := AV0 = AV1 and B̃V := B̃V0 = B̃V1 .
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Then, after simple, but cumbersome computations,
one concludes that the output w of Σ2D

per =
(Σ(0,0),Σ(1,0),Σ(0,1),Σ(1,1)), with

Σ(i,j) =
(
AH , AV , AV Hij = B̃V C̃Hi , B

H , BVij = B̃VDH
i ,

CHij = DV
j C̃

H
i , C

V
j , Dij

)
that corresponds to the input v and zero initial conditions(
xH(0, t2) = 0, xV (t1, 0) = 0

)
is such that, for l, k ∈ N0,

i, j = 0, 1,

w(2k + i, 2l + j) = DV
j D

H
i v(2k + i, 2l + j)

+
∑
t1≥1

C
H
ij (A

H
)
t1−1

B
H
v(2k + i− t1, 2l + j)

+
∑
t2≥1

C
V
j (A

V
)
t2−1

B
V
ijv(2k + i, 2l + j − t2)

+
∑
t1 ≥ 1
t2 ≥ 1

C
V
j (A

V
)
t2−1

A
V H
ij (A

H
)
t1−1

B
H
v(2k + i− t1, 2l + j − t2).

Let us now show that the trajectory

w̃ =
(
Vj(σ

−1
2 )Hi(σ

−1
1 )
)
v

equals w. For that, note that since ΣH0 =
(AH , BH , C̃H0 , D

H
0 ) is a realization of H0 we have

that

H0(z−1
1 ) = DH

0 +
∑
t1≥1

C̃H0 (AH)t1−1BHz−t11 .

In the same way

H1(z−1
1 ) = DH

1 +
∑
t1≥1

C̃H1 (AH)t1−1BHz−t11 ,

V0(z−1
2 ) = DV

0 +
∑
t2≥1

CV0 (AV )t2−1B̃V z−t22 .

and

V1(z−1
2 ) = DV

1 +
∑
t2≥1

CV1 (AV )t2−1B̃V z−t22 .

Thus

w̃(2k+i, 2l+j) =
∑

0 ≤ t1 ≤ 2k + i
0 ≤ t2 ≤ 2l + j

M(i, j)v(2k+i−t1, 2l+j−t2)

where M(i, j) is the coefficient of z−i1 z−j2 of the polynomial
matrix in z−1

1 and z−1
2 , Vj(z−1

2 )Hi(z
−1
1 ). It is not difficult

to check that

Vj(z
−1
2 )Hi(z

−1
1 ) = D

V
j D

H
i +

∑
t1≥1

D
V
j C̃

H
i (A

H
)
t1−1

B
H
z
−t1
1

+
∑
t2≥1

C
V
j (A

V
)
t2−1

B̃
V
D

H
i z

−t2
2

+
∑
t1 ≥ 1
t2 ≥ 1

C
V
j (A

V
)
t2−1
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)
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1 z
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Taking into account that CHij = DV
j C̃

H
i , BVij = B̃VDH

i and
AV Hij = B̃V C̃Hi , this allows to conclude that w̃ = w.

IV. CONCLUSIONS

In this paper we have studied the state space realization
problem for periodic 2D behavioral systems. Conditions
were provided under which a simple method for obtaining
state space realizations by means of 2D periodic (separable)
Roesser models can be implemented. For that purpose we
have assumed some relevant polynomial operators to have
the same column degrees. Although this requirement is
very restrictive, our conviction is that it can be relaxed.
Thus, the case where the relevant polynomial operators have
different column degrees will be investigated next. Future
work also includes the investigation of minimality issues for
the obtained realizations.
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