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Abstract— In this extended abstract, a stability certificate
is presented for sampled-data implementations of static out-
put feedback control with asynchronous sensor sampling and
zero-order-hold actuator updates, given continuous-time two-
input-single-output linear time-invariant system dynamics. The
approach involves structured integral quadratic constraint
(IQC) based robustness analysis, given individual bounds on
the uncertain sample and two update intervals involved, and
relationships between these. New IQCs for an operator that
depends on multiple time-varying delays are also presented.

I. INTRODUCTION

Consider the interconnection of a continuous-time system
with two inputs, and one output, and a stabilizing static
output feedback controller. A digital implementation of the
feedback loop, as may be required when sensor output and
actuator inputs cannot be otherwise interconnected, would
generically involve sampling of the system output and update
of the system inputs at discrete instants in times. This inher-
ently gives rise to time-varying dynamics. Specifically, at the
times between updates, each plant input is held constant at
a value determined by the most recent plant output sample,
taken at a varying time in the past [1].

Closed-loop stability is considered in the case where re-
source limitations result in asynchronous update and sample
event sequences that satisfy individual bounds on the variable
inter-update interval for each input, and inter-sample interval
for the output, and relationships between these. The main
result is an integral quadratic constraint (IQC) based stabil-
ity certificate for the time-varying feedback interconnection
given such bounds. The main contribution relates to the
correspondingly structured characterization of asynchrony
between the single plant output sample and two input update
sequences. The input-output context of the IQC approach
(see [2]) is also a distinguishing feature relative to much
of the literature, which is based mainly on hybrid/impulsive
state-space modelling and Lyapunov stability analysis [4]–
[11]. In the state-space literature, it is standard to relate
all sample and update events to a single time sequence,
for which an interval bounds holds. By contrast, in the
structured approach developed below, event sequences for
the output and each input are characterized individually, and

*Supported in part by the Australian Research Council (DP130104510)
and National Science Council of Taiwan (MOST 105-2221-E-110-039-
MY2, MOST 106-2221-E-110-007-MY2).

†Department of Electrical and Electronic Engineering, The Univer-
sity of Melbourne, VIC 3010, Australia. cantoni@unimelb.edu.au,
fabbro@ieee.org

‡Department of Electrical Engineering, National Sun Yat-Sen University,
Kaohsiung, 80424, Taiwan. cykao@mail.nsysu.edu.tw

with respect to each other. Other examples of input-output
analysis include [12] and [13], where sample/update timing
is synchronous (albeit aperiodic), and earlier work [14] and
[15], where direct feedthrough is excluded, and updates of
the different components of the input is synchronous.

Fig. 1. Constant gain feedback for two-input plant with asynchronous update
and sample timing (top); equivalent purely continuous-time system (bottom).

The feedback interconnection shown in the top part of
Fig. 1 can be used to model the aforementioned asyn-
chronous sampled-data implementation of a constant gain
feedback path. This interconnection is to be interpreted as
follows. At times in the set T ′ = {t ′k}∞

k=0, with t ′0 = 0, the
system output y is sampled and the value of a buffer that
stores the most recent sample is updated to the corresponding
value.1 This corresponds to the composite action of the
operators denoted by ST ′ and HT ′ . Respectively, these oper-
ators generate a sequence from samples of the continuous-
time input at the set of times T ′, and a held constant
between neighbouring instants of time in T ′ according to
the corresponding input sample sequence. For j ∈ {1,2}, at
each time in the set T ?

j = {t?j,k}∞
k=1, the j-th system input

updates to a new constant value equal to the product of
the static gain K j and the contents of the sample buffer at
the corresponding time.2 This corresponds to the compositie
action of the operator of multiplication by feedback gain K j,

1To simplify the development, suppose that there is no delay between
the sample time and buffer update time, although this can be readily
accommodated via appropriate adjustment of the analysis.

2Again, for simplicity it is assumed that there is no delay between time of
plant input update and time of update computation, although it is possible
to accommodate such delay within the analysis framework.
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followed by ST ?
j
, and finally HT ?

j
, where the latter denote

sample and hold operators with respect to the time sequence
T ?

j , in line with the description of ST ′ and HT ′ above.
Non-uniformity of the sample and update intervals, and

asynchrony between sample and update events, are repre-
sented by bounds on the difference between relevant ele-
ments of the time sequences T ′, T ?

1 , and T ?
2 . Specifically,

for the purpose of stability analysis, it is assumed that there
exists constants τ ′,τ?j ,τ

◦
j ,τ

] ∈ (0,∞) such that

0 < t ′k+1− t ′k ≤ τ
′, 0 < t?j,k+1− t?j,k ≤ τ

?
j ,

minT ?
j ∩ [t ′k,∞)− t ′k ≤ τ

◦
j , and

minT ?
j ∩ [t?j̄,k,∞)− t?j̄,k ≤ τ

], for k = 0,1, . . . ,

(1)

with t ′k→∞, t?j,k→∞, j̄ = ( j mod 2+1) and j ∈ {1,2}. The
approach to certifying stability of the asynchronous sampled-
data feedback interconnection is to devise a condition that
implies stability for all realizations of T ′, T ?

1 , and T ?
2 ,

that comply with the structured collection of bounds in
(1). This robust stability problem can be tackled by using
IQCs to characterize the possibilities, and by applying the
corresponding framework for the study of uncertain feedback
interconnections described in [2], as elaborated below. As
part of this, new IQCs are presented for a structured operator
that depends on the time-varying delay operators R j in
the equivalent interconnection in the bottom part of Fig. 1,
j ∈ {0,1,2}. Within the given setup, these time-varying
delays do not necessarily reset to zero, which is another
distinguishing feature of this work; see Remark 1 below.
It may be conservative to consider all possible realizations
of T ′, T ?

1 , and T ?
2 . This is the price of tractable analysis

conditions for the time-varying interconnection.
The rest of the paper is organized as follows. First some

notation and terminology are established to facilitate formu-
lation of the aforementioned robust stability problem. Then
a loop transformation is used in Section III to arrive at a
problem that is tractable within the IQC analysis framework.
New IQCs for characterizing a corresponding structured
operator that depends on two time-varying delays are devised
in Section IV to enable application of the IQC robustness
result. Some concluding remarks are made in Section V.

II. PRELIMINARIES

A. Signals, systems, and IQCs

The non-negative integers and reals are denoted by N0
and R, and R̄ = R∪{±∞}. The space of square integrable
functions defined on [0,∞)⊂R is denoted by L2 along with
the usual norm and inner product ‖ · ‖L2 and 〈·, ·〉L2 . The
extended L2 signal space is denoted by L2e. This comprises
functions f that satisfy πτ f ∈ L2 for τ > 0, where πτ

denotes the truncation operator; (πτ f )(t) = f (t) for t ≤ τ ,
and (πτ f )(t) = 0 otherwise. The n-times cartesian products
of L2 and L2e are denoted by Ln

2 and Ln
2e. Often the spatial

dimension of a signal space is dropped for convenience.
The operator G : L2e→L2e is said to be causal if πτ Gπτ−

Gπτ = 0 for all τ > 0. The restriction to L2, also denoted
by G, is bounded if ‖G‖ = supu∈L2

‖Gu‖L2/‖u‖L2 is finite.

If G is casual and bounded, then it is called stable. When
G is linear and bounded, the adjoint is denoted by G∗;
i.e., 〈v,Gu〉L2 = 〈G∗v,u〉L2 . If G = G∗, then G is said to
be self-adjoint, in which case the notation G ≥ 0 means
〈u,Gu〉L2 ≥ 0 for all u ∈ L2. If G is linear and commutes
with the forward shift operator (i.e., G is “time invariant”),
then it can be represented as multiplication in the frequency
domain by a transfer function matrix, also denoted by G for
convenience. When G is also bounded on L2, this function
is analytic and bounded in the right-half plane [16]. In this
case, ‖G‖= esssupω∈R σmax(G(jω)), and G≥ 0 if and only
if G(jω)≥ 0 for all ω ∈ [0,∞], where j=

√
−1 and σmax(·)

denotes maximum singular value. If G admits a rational
transfer function G(s) =C(sI−A)−1B+D, the (non-unique)
matrices (A,B,C,D) are called a state-space realization of G.

Given the measurable and uniformly bounded multiplier
Π = ((ω ∈ R̄) 7→ (Π(jω) ∈ C(m+p)×(m+p))), with Π(jω) =
Π(jω)∗, the stable (i.e., causal and bounded) operator ∆ :
Lp

2e→ Lm
2e is said to satisfy the IQC defined by Π if∫

∞

−∞

([
v̂

∆̂v

]
(jω)

)∗
Π(jω)

[
v̂

∆̂v

]
(jω)dω ≥ 0

holds for all v ∈ Lp
2 , where ·̂ denotes the Fourier transform.

The multiplier Π is often block partitioned according to the
components of v and ∆v. Dependence of the multiplier on a
parameter X is denoted by Π(X).

Finally, given causal G : Lm
2e→ Lp

2e and ∆ : Lp
2e→ Lm

2e, if
for every (w1,w2) ∈ Lm

2e×Lp
2e there exist unique (v1,v2) ∈

Lm
2e×Lp

2e so that {
v1 = ∆v2 +w1

v2 = Gv1 +w2
, (2)

and the closed-loop map [G,∆] = ((w1,w2) ∈ Lm
2e×Lp

2e) 7→
((v1,v2) ∈ Lm

2e×Lp
2e)) is causal, then the feedback intercon-

nection is called well-posed. Moreover, if the induced norm
of the restriction to L2 is also bounded (i.e., ‖[G,∆]‖< ∞),
then the closed-loop is said to be stable.

B. Sample, hold, and delay operators.

Given T = {tk}∞
k=0 ⊂ [0,∞), satisfying t0 = 0, tk+1−tk > 0,

and limk→∞ tk =∞, the sampling operator ST denotes the map
from the continuous-time signal v∈Cr∩L2e to the discretely
indexed sequence ṽ= {ṽk}∞

k=0, such that ṽk = v(tk), where Cr
denotes the space of right continuous functions defined on
[0,∞). Conversely, HT denotes the zero-order hold operator
synchronized to the event sequence T , which maps the
discretely indexed signal ṽ = {ṽk}∞

k=0 to the continuous-time
signal v such that

v(t) = (HT ṽ)(t) = ṽk for t ∈ [tk, tk+1), k ∈ N0;

note that v ∈ L2e because every finite truncation of
the sequence ṽ is square summable. Given the func-
tion τ : [0,∞)→ [0,∞), the time-varying delay operator
Rτ : L2e→ L2e is defined by

(Rτ v)(t) =

{
v(t− τ(t)) if t− τ(t)≥ 0,
0 otherwise.
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Lemma 1: Given T = {tk}∞
k=0, such that 0 < tk+1− tk ≤ h

for all k ∈ N0 and limk→∞ tk = ∞, let n(t) = max{k | tk ∈
[0, t], k ∈ N0} and τ(t) = t− tn(t) for t ∈ [0,∞). Then

Rτ u =HTST u for all u ∈ Cr ∩L2e. (3)
Lemma 2: Given τ : [0,∞) → [0,∞), the time-varying

delay operator Rτ commutes with multiplication by the
constant gain K; i.e., KRτ −Rτ K = 0.

Fig. 2. Loop transformation of system shown in Fig. 1 to facilitate analysis
in terms of IQC descriptions of the time-varying operators ϒ1 and ϒ2.

III. CLOSED-LOOP STABILITY VERIFICATION

Consider the feedback interconnection shown in the top
part of Fig. 1. For j ∈ {1,2}, let τ ′,τ?j ,τ

◦
j ,τ

] ∈ (0,∞) be
bounds that characterize the possibly aperiodic and asyn-
chronous time sequences T ′ = {t ′k}∞

k=0 and T ?
j = {t?j,k}∞

k=0
as shown in (1). Let the linear time-invariant system P :
L2e × L2e → L2e have the strictly-proper rational transfer
function

P(s) =
[
P1(s) P2(s)

]
=Cp(sI−Ap)

−1 [Bp1 Bp2
]
,

and the feedback gains K1 and K2 make the standard
continuous-time closed-loop [

[
P1 P2

]
,
[

K1
K2

]
] stable.

Since all open-loop components are causal, and P has a
strictly proper transfer function, the open loop is strongly
causal, whereby the sampled-data feedback interconnection
is well-posed in the following sense [17]: For every d1,d2 ∈
L2e, there exist unique u1,u2 ∈ L2e that satisfy

d =

[
d1
d2

]
=

(
I−
[
HT ?

1
ST ?

1
K1

HT ?
2
ST ?

2
K2

]
HT ′ST ′

[
P1 P2

])[u1
u2

]
,

and the closed-loop map (d1,d2) 7→ (u1,u2) is causal. The
strict properness of P also implies the signal y is piece-
wise continuously differentiable. The closed-loop is stable
if the restriction of the causal map (d1,d2) 7→ (u1,u2) to
L2 is bounded. Note that the injection of a right-continuous
signal d3 ∈ Cr ∩L2e at the output of P can be modelled in
terms of a corresponding (d1,d2) ∈ L2e by linearity; n.b.,
HT ?

j
ST ?

j
K jHT ′ST ′d3 ∈ L2e for j ∈ {1,2}. Moreover, if d3 ∈

Cr ∩L2, then HT ?
j
ST ?

j
K jHT ′ST ′d3 ∈ L2. As such, it suffices

to consider the closed-loop map (d1,d2) 7→ (u1,u2).
The first result in this section pertains to the equivalence

between all of the feedback interconnections shown in Fig. 1
and Fig. 2. In the latter, the operators I : L2e → L2e and
I−1 : D → L2e denote integration and differentiation. In
particular, I = (v∈L2e) 7→ ((t 7→

∫ t
0 v(x)dx)∈L2e), II−1y=

y for all y in the subset D ⊂ L2e of piecewise continuously
differentiable functions, and I−1I = Id, where Id denotes
the identity on L2e. Moreover, for j ∈ {1,2} and t ∈ [0,∞),
the following notation applies:

τ0(t) = t− t ′n0(t)
; τ j(t) = t− t?j,n j(t);

n0(t) = max{k | t ′k ∈ [0, t], k ∈ N0};
n j(t) = max{k | t?j,k ∈ [0, t], k ∈ N0};
σ j(t) = τ j(t)+ τ0(t− τ j(t)) = t− t ′m j(t);

m j(t) = max{k | t ′k ∈ [0, t?j,n j(t)], k ∈ N0}; (4)

and

ϒ j = (Id−Rσ j)I. (5)

Remark 1: Note that σ j is a saw-tooth function, with
discontinuities that DO NOT necessarily reset to zero at the
update times T ?

j . This is a distinguishing feature of this work.
Lemma 3: The sampled-data feedback interconnection

shown in the top part of Fig. 1 is equivalent to{
v = Gvww+Gvdd
w = ∆v , (6)

with exogenous input d, and internal signals v and w, where

∆ =

[
ϒ1
ϒ2

]
,

Gvd = I−1(1− (P1K1 +P2K2))
−1 [P1 P2

]
, and

Gvw =−I−1(1− (P1K1 +P2K2))
−1
[

P1K1 0
0 P2K2

]
,

(7)

which is the last feedback interconnection shown in Fig. 2.
The feedback interconnection (6) is directly amenable to

a standard robust stability analysis technique given an IQC
characterization of the structured time-varying operator ∆.

Theorem 1: The operators Gvw, Gvd , and ∆, in (7) are
stable (i.e., causal and bounded), and the feedback intercon-
nection [Gvw,τ∆] is well-posed for τ ∈ [0,1]. Moreover, given
multiplier Π = Π∗, with Π11 ≥ 0 and Π22 ≤ 0, if
• ∆ satisfies the IQC defined by Π, and
• there exists ε > 0 such that〈[

Gvww
w

]
,Π

[
Gvww

w

]〉
L2

≤−ε‖w‖2
L2
∀ w ∈ L2, (8)

then [Gvw,τ∆] is stable for all τ ∈ [0,1]. In particular, the
feedback interconnection (6) is stable in this case.

Proof: By assumption
[
K>1 K>2

]> stabilizes
the strictly proper system P, whereby (I − (P1K1 +
P2K2))

−1diag(P1K1,P2K2) is stable with strictly
proper transfer function, whence I−1(I − (P1K1 +
P2K2))

−1diag(P1K1,P2K2) is proper; i.e., Gvw is causal
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and bounded, as claimed. Similarly, Gvd is stable. Clearly,
ϒ j = (I − Rσ j)I : L2e → L2e is causal, as it is the
composition of causal operators. Boundedness of the
restriction to L2 is established as part of Lemma 4 below.
Moreover, for j ∈ {1,2},

(ϒ jv)(t) =
∫ t

t ′m j(t)

v(x)dx, (9)

where m j(t) is defined in (4). As such, the operator ϒ is
strongly causal because for every t > 0, which implies the
same for τ∆ with τ ∈ [0,1]. Therefore, [Gvw,τ∆] is well-
posed [17]. With this established, the rest of the stated result
follows by direct application of the standard IQC robust
stability theorem; e.g., see [2].

IV. IQCS FOR ∆

A family of IQCs for characterizing the uncertain operator
∆ in (7) is developed below to enable application of the
robust stability conditions in Theorem 1. First, IQCs are de-
rived for the operators ϒ j individually, given corresponding
bounds (1), which relate to constraints on the sample and
update times T ′ = {t ′k}∞

k=0 and T ?
j = {t?j,k}∞

k=0. These are then
combined to construct IQCs for ∆.

Lemma 4 (Bounded Gain): Given j ∈ {1,2}, if 0 <
(t?j,k+1− t?j,k)≤ τ?j and (minT ?

j ∩ [t ′k,∞)− t ′k)≤ τ◦j for k ∈N0,

then ‖ϒ j‖ ≤ 2τ?j /π +
√

τ?j τ◦j , where π is half the circumfer-
ence of the unit circle.

Lemma 5 (Passivity): Given any v ∈ L2, the following
holds with w = ϒ jv: 〈w,v〉L2 +(τ◦j /2)‖v‖2

L2
≥ 0.

The relationship between ϒ1 and ϒ2 when acting on the
same signal can also be used in the construction of an IQC
for the structured ∆ in (7).

Lemma 6: For all v ∈ L2, the following holds with w1 =
ϒ1v and w2 = ϒ2v: ‖w2−w1‖2

L2
≤ (τ ′+ τ])τ] ‖v‖2

L2
.

Finally, based on Lemmas 4, 5 and 6, a family of IQCs
can be derived for the operator ∆ in (7).

Theorem 2: Given bounds τ ′,τ?j ,τ
◦
j ,τ

] ∈ (0,∞) such that

(1) holds for j ∈ {1,2}, let γ?j = (2τ?j /π +
√

τ?j τ◦j )
2. With

ϒ j as in (5) for j ∈ {1,2}, the structured operator

∆ =

[
ϒ1
ϒ2

]
satisfies the IQC defined by the multiplier

Π(X1, · · · ,X5) =

[
Π11 Π12
Π>12 Π22

]
for any choice of the parameters Xi ≥ 0, i = 1, . . . ,5, where

Π11 = γ
?
1 X1 + γ

?
2 X2 + τ

◦
1 X3 + τ

◦
2 X4 +(τ ′+ τ

])τ]X5,

Π12 =
[
X3 X4

]
, and

Π22 =

[
−X1−X5 X5

X5 −X2−X5

]
.

Remark 2: Given (Agw,Bgw,Cgw,Dgw), a state-space real-
ization of the transfer function for Gvw in (7), the stability
certificate (8) in Theorem 1 can be reformulated as a convex
feasibility problem expressed in terms of finite-dimensional

linear matrix inequalities by application of the KYP lemma
(see [19]) to the equivalent frequency domain condition[

Gvw(jω)
I

]∗
Π(X1, . . . ,X5)

[
Gvw(jω)

I

]
< 0 ∀ ω.

V. CONCLUSION

A computationally tractable stability certificate is devised
for an asynchronous feedback interconnect. The approach
involves structured IQC based robust stability analysis given
individual bounds on the inter-sample and inter-update inter-
vals, and relationships between these. New IQCs are given
for a related operator that depends on multiple time-varying
delays. Numerical examples, performance analysis, and the
impact of delay and quantization in the information exchange
and processing, are all topics of ongoing work.
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