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Abstract— This paper develops a curse-of-dimensionality-free
numerical approach to construct control Lyapunov functions
(CLFs) and stabilizing feedback strategies for deterministic
control systems described by ODEs. An extension of the Zubov
method is used to represent a CLF as the value function
for an appropriate infinite-horizon optimal control problem.
The infinite-horizon stabilization problem is approximated by
an exit time problem, with target set given by a sufficiently
small closed neighborhood of the origin in the state space.
In order to compute the related value function and optimal
feedback control law separately at different initial states and
thereby to attenuate the curse of dimensionality, an extension
of a recently developed characteristics based framework is
proposed. Theoretical foundations of the developed approach
are given together with practical discussions regarding its
implementation, and numerical examples are also provided. In
particular, it is pointed out that the curse of complexity may
remain a significant issue even if the curse of dimensionality is
avoided.

I. INTRODUCTION

The area of designing state feedbacks for dynamic systems
stabilization via control Lyapunov functions (or CLFs in
short) has received wide interest in the last decade [1]–
[3]. For deterministic control systems described by systems
of ordinary differential equations without state constraints,
the work [1] developed a general constructive approach
of representing CLFs as value functions for appropriate
infinite-horizon optimal control problems and, therefore,
as unique viscosity solutions of certain Hamilton–Jacobi–
Bellman (HJB) partial differential equations of first order.
This was in fact an extension of the classical Zubov method
for constructing Lyapunov functions [4] to the problem of
weak asymptotic null-controllability. As was demonstrated in
[3, Example 5.2], the framework of [1] can also be extended
to some classes of state-constrained problems.

Many broadly used numerical methods for solving gen-
eral Hamilton–Jacobi (HJ) equations and in particular HJB
equations, such as semi-Lagrangian schemes [5], [6], finite
difference schemes [8], [9] and level set techniques [10],
[11], rely on sufficiently dense state space discretizations.
The computational cost of such methods grows exponentially
with the increase of the state space dimension n, and their
implementation appears to be extremely difficult for n > 4.
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This leads to what was termed “the curse of dimensionality”
by R. Bellman [12].

The paper [13] contains an overview of some existing
studies on various approaches to mitigate the curse of
dimensionality for certain classes of HJ equations. One
group of methods exploits idempotent analysis tools and
the max-plus algebra for problems where the Hamiltonian
is represented as the maximum or minimum of a finite
number of elementary Hamiltonians corresponding to linear-
quadratic optimal control problems [14], [15]. Despite the
attenuation of the curse of dimensionality, some practical
issues may arise when implementing such methods, i. e., the
curse of complexity may still be a formidable barrier.

Another promising direction is using the method of char-
acteristics in order to reduce computation of a sought-after
value function at selected states to finite-dimensional opti-
mization problems [13], [16], [17]. Contrary to the aforemen-
tioned grid-based approaches, this allows the value function
to be computed separately at different states. The curse of
dimensionality can consequently be mitigated, and it is easy
to arrange parallel computations. The curse of complexity
may nevertheless remain when constructing global solution
approximations. The sparse grid framework [18] may help
in that effort if the state space dimension is not too high.

This work is aimed at combining the theoretical argu-
ments of [1] with an extension of the characteristics based
techniques of [13], [16], [17] and developing a curse-of-
dimensionality-free approach for approximating CLFs and
related state feedbacks.

The paper is organized as follows. Section II recalls
the main results of [1] and contains additional theoreti-
cal discussions. The curse-of-dimensionality-free approach
is described in Section III, and practical remarks on its
implementation are also provided there. Section IV contains
two numerical examples, while concluding remarks are given
in Section V.

Finally, let us indicate some notations that are used
throughout this paper:
• given j ∈ N, the origin in Rj is denoted by 0j , ‖ · ‖

is the Euclidean norm in Rj (we avoid any confusions
when considering the norms of vectors with different
dimensions together), the Euclidean distance between
a point ξ ∈ Rj and a set Ξ ⊆ Rj is written as
dist (ξ,Ξ), the open Euclidean ball with center ξ ∈ Rj
and radius R > 0 is denoted by BR(ξ), while its closure
is B̄R(ξ);

• if a vector variable ξ consists of some arguments of
a map F = F (. . . , ξ, . . .), then DξF denotes the
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standard (Fréchet) derivative of F with respect to ξ, and
DF is the standard derivative with respect to the vector
of all arguments (the exact definitions of the derivatives
depend on the domain and range of F );

• given a function F : Ξ1 → R, the set of its global
minimizers on Ξ ⊆ Ξ1 is denoted by Arg minξ∈Ξ F (ξ);

• K is the class of all strictly increasing continuous
functions ϕ : [0,+∞)→ [0,+∞) with ϕ(0) = 0;

• K∞ is the class of all functions ϕ(·) ∈ K satisfying
limρ→+∞ ϕ(ρ) = +∞;

• L is the class of all nonincreasing continuous
functions ϕ : [0,+∞) → [0,+∞) for which
limρ→+∞ ϕ(ρ) = 0;

• KL is the class of all continuous func-
tions ϕ : [0,+∞)2 → [0,+∞) such that ϕ(·, ρ) ∈ K
and ϕ(ρ, ·) ∈ L for every ρ > 0.

II. CHARACTERIZATION OF CONTROL
LYAPUNOV FUNCTIONS VIA OPTIMAL CONTROL

PROBLEMS

Let G ⊆ Rn and U ⊆ Rm be sets in the state and control
spaces, respectively. Denote states by x and control inputs
by u. Consider the autonomous control system{

ẋ(t) = f(x(t), u(t)), t > 0, x(0) = x0 ∈ G,

u(·) ∈ U def
= L∞loc([0,+∞), U).

(1)

First, some basic conditions are imposed.
Assumption 2.1: The following properties hold:

1) U is a closed set in Rm, and 0m ∈ U ;
2) G and G1 are open domains in Rn, 0n ∈ G, and
Ḡ ⊂ G1;

3) the function G1 × U 3 (x, u) 7−→ f(x, u) ∈ Rn
is continuous;

4) G is a strongly invariant domain in the state space for
the control system (1), i. e., x0 ∈ G and u(·) ∈ U imply
that any corresponding state trajectory of (1) defined on
some interval of the form [0, T ), T ∈ (0,+∞)∪{+∞}
stays inside G and cannot reach the boundary ∂G (G =
Rn is a trivial example of a strongly invariant domain);

5) there exists a function γ1(·) ∈ K∞ such that, for any
R > 0, one can choose C1,R > 0 satisfying

‖f(x, u) − f(x′, u)‖ 6 (1 + γ1(‖u‖)) C1,R ‖x− x′‖
∀ x, x′ ∈ B̄R(0n) ∩ Ḡ ∀u ∈ U ;

6) the forward completeness property [19] holds here
in the sense that there exist a continuously differ-
entiable proper function W : Ḡ → [0,+∞) and a
constant C2 > 0 satisfying

sup
u∈U

〈DW (x), f(x, u)〉 6 C2W (x) ∀x ∈ Ḡ.

Remark 2.2: For any x0 ∈ G and u(·) ∈ U , let

[0, Text(x0, u(·))) 3 t 7−→ x(t; 0, x0, u(·)) ∈ G

be a solution of the Cauchy problem (1) defined on the
maximum extendability interval with the right endpoint
Text(x0, u(·)) ∈ (0,+∞) ∪ {+∞}. It is in fact possible

to use the simplified notation x(·; x0, u(·)), because the
system is time invariant and the initial time t0 = 0 is
fixed. Here the initial time is indicated to ensure consistency
with the corresponding notation in [13]. The local existence
and uniqueness of the solutions follow from Items 1–5 of
Assumption 2.1, while Item 6 is added in order to guarantee
their extendability to the whole time interval [0,+∞).

Suppose also that the origin 0n is an equilibrium of (1)
for u ≡ 0m and that a local asymptotic null-controllability
property holds in a weak or strong form as follows [1,
Section 2].

Assumption 2.3: f(0n, 0m) = 0n, and one of the follow-
ing two conditions hold (the second condition is a strength-
ened form of the first one):

1) there exist positive constants r, ū and a func-
tion β(·, ·) ∈ KL such that B̄r(0n) ⊆ G and, for
any x0 ∈ Br(0n), one can choose a control strat-
egy ux0

(·) ∈ L∞([0,+∞), U) satisfying

‖ux0(·)‖L∞([0,+∞), U) 6 ū,

‖x (t; 0, x0, ux0(·))‖ 6 β(‖x0‖, t) ∀t > 0;

2) there exists a constant r > 0 and a function β(·, ·) ∈
KL such that B̄r(0n) ⊆ G and, for any x0 ∈
Br(0n), one can choose a control strategy ux0(·) ∈
L∞([0,+∞), U) satisfying

‖x (t; 0, x0, ux0(·))‖+‖ux0(t)‖ 6 β(‖x0‖, t) ∀t > 0.
Remark 2.4: If 0m ∈ intU , the function f(·, ·) is contin-

uously differentiable, f(0n, 0m) = 0n and

rank
[
B, AB, A2B, . . . , An−1B

]
= n,

A
def
= Dxf(0n, 0m), B

def
= Duf(0n, 0m),

(2)

then the well-known result [20, §6.1, Theorem 1] allows
local null-controllability of (1) to be concluded (so that the
origin in the state space can be exactly reached in finite
time), and Item 2 of Assumption 2.3 obviously holds. If the
condition (2) is not satisfied, verification of Assumption 2.3
for nonlinear systems may in general be a difficult task. For
some classes of control-affine systems, the considerations of
[21, §9.4] may be applied.

Remark 2.5: According to [22, Proposition 7], β(·, ·) ∈
KL implies the existence of two functions α1(·), α2(·) ∈
K∞ satisfying β(ρ, t) 6 α2 (α1(ρ) e−t) for all ρ, t > 0.
For example, if C5, C6 are positive constants, ν(·) ∈ K∞
and β(ρ, t) = C5 ν(ρ) e−C6 t, then one can take α1(ρ) =
(ν(ρ))1/C6 and α2(ρ) = C5 ρ

C6 .
Definition 2.6: The global region of asymptotic null-

controllability for the system (1) is

D0
def
=

{
x0 ∈ G : there exists u(·) ∈ L∞([0,+∞), U)

such that lim
t→+∞

‖x(t; 0, x0, u(·))‖ = 0

}
.

Remark 2.7: Compared to [1], we consider the control
system (1) not necessarily in the whole state space Rn but in
a strongly invariant domain G ⊆ Rn. That is why D0 ⊆ G
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in Definition 2.6. If G 6= Rn, the strong invariance of G still
allows to obtain analogs of the key results of [1] (by using
similar reasonings).

Proposition 2.8: [1, Proposition 2.3] Under Assump-
tions 2.1 and 2.3, D0 is an open domain containing B̄r(0n).

Assumption 2.9: U ⊆ Rm is a compact set.
Remark 2.10: The assumptions of [1, Section 2] do not

exclude the situations when, for some initial states and
control strategies, the related state trajectories of (1) explode
and cannot be extended to the whole time interval [0,+∞).
Item 6 of Assumption 2.1 excludes such situations. This and
also Assumption 2.9 will be needed, in particular, to establish
a general existence result for optimal control strategies in the
next section (see Theorem 3.3).

Remark 2.11: In line with [1, Section 2],
L∞([0,+∞), U) is selected as the control class in
Assumption 2.3 and Definition 2.6. Under Assumption 2.9,
this class obviously coincides with U = L∞loc([0,+∞), U),
as well as with the class of all Lebesgue measurable
functions defined on [0,+∞) and taking values in U .

Now let us briefly describe the approach of [1, Section 3]
for representing the domain of asymptotic null-controllability
through the value function of an optimal control problem.
Certain conditions should be imposed on the related running
cost Ḡ× U 3 (x, u) 7−→ g(x, u) ∈ R.

Assumption 2.12: Let α−1
2 (·) be the inverse of the func-

tion α2(·) introduced in Remark 2.5, and take the func-
tion γ1(·) from Assumption 2.1 and the constants r, ū from
Assumption 2.3. The following properties hold:

1) the function g(·, ·) is continuous and nonnegative;
2) there exists a function γ2(·) ∈ K∞ such that, for any
R > 0, one can choose C7,R > 0 satisfying

|g(x, u) − g(x′, u)| 6 (1 + γ2(‖u‖)) C7,R ‖x− x′‖
∀ x, x′ ∈ B̄R(0n) ∩ Ḡ ∀u ∈ U ;

3) for all R > 0, one has

gR
def
= inf {g(x, u) : (x, u) ∈ Ḡ× U,

‖x‖ > R} > 0;

4) if Item 2 in Assumption 2.3 is not asserted, then there
exist positive constants C8, C9 satisfying

g(x, u) 6 C8

(
α−1

2 (‖x‖)
)C9

∀x ∈ B̄r(0n) ∀ u ∈ B̄ū(0m) ∩ U ;
(3)

5) if Item 2 in Assumption 2.3 holds, then (3) is weak-
ened to

g(x, u) 6 C8

(
α−1

2 (‖x‖+ ‖u‖)
)C9

∀x ∈ B̄r(0n) ∀ u ∈ B̄ū(0m) ∩ U,

where C8, C9 are positive constants;
6) there exists a constant C10 > 0 such that

g(x, u) > C10 (‖f(x, u)‖ + max {γ1(‖u‖), γ2(‖u‖)})
∀ (x, u) ∈ {(x′, u′) ∈ Ḡ× U : ‖x′‖ > 2r

or ‖u′‖ > 2ū}.
(4)

Define the functional

G× U 3 (x0, u(·)) 7−→

J(x0, u(·)) def
=

∞∫
0

g(x(t; 0, x0, u(·)), u(t)) dt

∈ [0,+∞) ∪ {+∞}.

(5)

The value function of the corresponding optimal control
problem is specified as

G 3 x0 7−→ V (x0)
def
= inf

u(·)∈U
J(x0, u(·)). (6)

In order to handle the infinite value +∞, consider the
Kruzhkov transformed function

G 3 x0 7−→ v(x0)
def
= 1 − e−V (x0) ∈ [0, 1] (7)

with the convention e−(+∞) def
= e−∞

def
= 0.

Remark 2.13: In [1, Section 3], the condition (4) is im-
posed with C10 = 1. However, it is clear that multiplying
the running cost by an arbitrary positive constant leads to an
equivalent optimization criterion.

The sought-after characterization of D0 is given in the next
result.

Theorem 2.14: [1, Propositions 3.3, 3.5 and 3.6] Let
Assumptions 2.1, 2.3, 2.9 and Items 1–5 of Assumption 2.12
hold. Then the domain of asymptotic null-controllability can
be represented as

D0 = {x0 ∈ G : V (x0) < +∞} = {x0 ∈ G : v(x0) < 1}.

If, moreover, Item 6 of Assumption 2.12 holds, then V (·) is
continuous on D0, v(·) is continuous on G,

{0n} = {x0 ∈ G : V (x0) = 0} = {x0 ∈ G : v(x0) = 0},

and, for any sequence
{
x(k)

}∞
k=1

⊂ G satisfying either
limk→∞ dist

(
x(k), ∂D0

)
= 0 or limk→∞

∥∥x(k)
∥∥ =

+∞, one also has limk→∞ V
(
x(k)

)
= +∞ and

limk→∞ v
(
x(k)

)
= 1.

Remark 2.15: According to [1, Remark 4.2], V (·) is in-
deed a CLF on D0 (for a general definition of a CLF, see,
e. g., [1, Introduction] and [2, Sections 2.5, 2.7]), and v(·)
is a continuous viscosity supersolution on D0 of the partial
differential inequality

sup
u∈U

{− 〈Dv(x), f(x, u)〉} > w(x) g‖x‖,

where w : D0 → R is a continuous function satisfying

w(0n) = 0, 0 < w(x) < 1− v(x) ∀ x ∈ D0 \ {0n},

gR is defined as in Item 3 of Assumption 2.12 if R > 0, and
g0

def
= 0.

The next theorem can be obtained similarly to [1, The-
orem 4.4]. Due to Assumption 2.9, one does not need to
impose [1, Hypothesis (H6)].

Theorem 2.16: Under Assumptions 2.1, 2.3, 2.9 and 2.12,
the transformed value function v(·) is the unique bounded
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viscosity solution of the following boundary value problem
for the HJB equation:

sup
u∈U

{− 〈Dv(x), f(x, u)〉

− (1− v(x)) g(x, u)} = 0, x ∈ G,
v(0n) = 0.

(8)

Remark 2.17: Theorems 2.14 and 2.16 extend the classi-
cal Zubov method for constructing Lyapunov functions [4]
to the problem of weak asymptotic null-controllability [1].

Remark 2.18: A well-known numerical approach for solv-
ing a stationary first-order HJB equation is to implement
an appropriate semi-Lagrangian scheme [5], [6]. Since the
problem (8) has a singularity at the origin x = 0n, the
fixed point argument of [5, Appendix A, §1] fails here, and
the convergence of the related semi-Lagrangian scheme is
not guaranteed (see the discussion in [7, Section 4] that
is relevant for (8), although it was originally provided for
the somewhat different problem of strong asymptotic null-
controllability). In order to ensure the convergence, one can
consider the regularized problem

sup
u∈U

{− 〈Dvε(x), f(x, u)〉 − g(x, u)

+ vε(x) ĝε(x, u)} = 0, x ∈ G,
v(0n) = 0,

(9)

with ĝε(x, u) = max {g(x, u), ε} and a sufficiently
small ε > 0. Similarly to [7, Section 4], one can verify
that there exists a unique bounded viscosity solution of
(9) and that it uniformly converges to the solution of (8)
on G as ε → +0. However, semi-Lagrangian schemes
usually require dense state space discretizations, as well as
many other grid-based numerical methods for solving HJ
equations, such as finite difference schemes [8], [9] and
level set techniques [10], [11]. The computational cost of
such methods grows exponentially with the increase of the
state space dimension n, and their application in general
becomes extremely difficult for n > 4, even when using
supercomputers. The corresponding circumstances were re-
ferred to as the curse of dimensionality by R. Bellman [12].
Moreover, the practical dilemma of selecting a suitable
bounded computational region in the state space (so as to
reduce boundary cutoff errors in a relevant subregion) often
arises when implementing grid-based methods.

With this in mind, the aim of the current work is to extend
the framework of [13], [16], [17] in order to develop a char-
acteristics based curse-of-dimensionality-free approach for
approximating CLFs and related feedback strategies. Such
an extension becomes possible due to the aforementioned
representation of CLFs via optimal control problems.

III. A CHARACTERISTICS BASED
CURSE-OF-DIMENSIONALITY-FREE APPROACH

FOR APPROXIMATING CONTROL LYAPUNOV
FUNCTIONS AND FEEDBACK STABILIZATION

For computational purposes, it is reasonable to approxi-
mate the infinite-horizon optimal control problem (6) by an
exit time problem, stated with respect to a closed ball B̄δ(0n)

with center x = 0n and sufficiently small radius δ ∈ (0, r]
(the constant r is taken from Assumption 2.3). Define the
associated value function by

Vδ(x0)
def
= inf


T∫
0

g(x(t; 0, x0, u(·)), u(t)) dt : u(·) ∈ U ,

x(T ; 0, x0, u(·)) ∈ B̄δ(0n) at some T ∈ [0,+∞)


∀x0 ∈ G ∀δ ∈ (0, r].

(10)

After adopting the notation
Tδ(x0, u(·))

def
= inf

{
T ∈ [0,+∞) : x(T ; 0, x0, u(·)) ∈ B̄δ(0n)

}
∀x0 ∈ G ∀u(·) ∈ U ,

(11)

the value function (10) can be equivalently rewritten as
Vδ(x0)

= inf
u(·)∈U :

Tδ(x0, u(·))< +∞


Tδ(x0, u(·))∫

0

g(x(t; 0, x0, u(·)), u(t)) dt


∀x0 ∈ G ∀δ ∈ (0, r].

(12)
Here the convention inf ∅ = +∞ is used. Similarly to (7),
introduce the function

G 3 x0 7−→ vδ(x0)
def
= 1 − e−Vδ(x0) ∈ [0, 1]. (13)

The next theorem indicates the validity of the proposed
approximation and can be proved by using Theorem 2.14
and the dynamic programming principle for the transformed
value function v(·) in the original problem (6) (a general for-
mulation of dynamic programming principles can be found
in [23]).

Theorem 3.1: Under Assumptions 2.1, 2.3, 2.9 and 2.12,
the following properties hold:

1) for any δ ∈ (0, r], the domain of asymptotic null-
controllability can be represented as

D0 = {x0 ∈ G : Vδ(x0) < +∞}
= {x0 ∈ G : vδ(x0) < 1}

(it does not depend on δ due to Definition 2.6);
2) vδ(x0)→ v(x0) uniformly on D0 as δ → +0.

One more assumption is needed for establishing the exis-
tence of an optimal control strategy in the problem (10).

Assumption 3.2: The set{
(f(x, u), g(x, u)) ∈ Rn+1 : u ∈ U

}
is convex for every x ∈ G.

The following result can be verified with the help of the
general existence theorem in [24, §9.3].

Theorem 3.3: Let Assumptions 2.1, 2.3, 2.9, 2.12 and 3.2
hold. For any fixed initial state x0 ∈ D0 and parameter δ ∈
(0, r], the minimization problem (10) admits an optimal
control strategy.

Some smoothness properties are also needed in order to
use necessary optimality conditions (Pontryagin’s principle)
for the problem (10).
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Assumption 3.4: The functions f(·, u) and g(·, u) are con-
tinuously differentiable on Ḡ for any u ∈ U .

Theorem 3.5: (Pontryagin’s principle; see, e. g., [24, §5.1,
§4.2 (emphasize Remark 10), §4.4.B]) Let Assumptions 2.1,
2.3, 2.9, 2.12, 3.2 and 3.4 hold. Suppose that u∗(·) ∈ U is
an optimal control strategy in the problem (10) for a fixed
initial state x0 ∈ D0 and a fixed parameter δ ∈ (0, r]. Let
x∗ : [0, Tδ(x0, u

∗(·))] → G be the corresponding optimal
state trajectory. Denote T ∗δ (x0)

def
= Tδ(x0, u

∗(·)) < +∞
for the sake of brevity. Introduce also the Hamiltonian:

H (x, u, p, p̃)
def
= 〈p, f(x, u)〉 + p̃ g(x, u)

∀ (x, u, p, p̃) ∈ G× U × Rn × R.
(14)

Then there exist an absolutely continuous function
p∗ : [0, T ∗δ (x0)] → Rn and a constant p̃∗ > 0 such that the
following properties hold:
• (p∗(t), p̃∗) 6= 0n+1 for every t ∈ [0, T ∗δ (x0)];
• (x∗(·), p∗(·)) is a solution of the characteristic boundary

value problem

ẋ∗(t) = f(x∗(t), u∗(t)),

ṗ∗(t) = −DxH (x∗(t), u∗(t), p∗(t), p̃∗) ,

t ∈ [0, T ∗δ (x0)] ,

x∗(0) = x0, ‖x∗ (T ∗δ (x0))‖ 6 δ,

p∗ (T ∗δ (x0)) ∈ N
(
x∗ (T ∗δ (x0)) ; B̄δ(0n)

)
= {λ x∗ (T ∗δ (x0)) : λ > 0}

(15)

(here N (ξ; Ξ) denotes the normal cone to a convex
set Ξ ⊆ Rn at a point ξ ∈ Ξ);

• u∗(·) satisfies the Hamiltonian minimum condition

H (x∗(t), u∗(t), p∗(t), p̃∗)

= min
u∈U

H (x∗(t), u, p∗(t), p̃∗)
(16)

for almost all t ∈ [0, T ∗δ (x0)];
• one also has H (x∗(t), u∗(t), p∗(t), p̃∗) ≡ 0 for all
t ∈ [0, T ∗δ (x0)].

Remark 3.6: Note that the Hamiltonian (14) is positive
homogeneous of degree 1 with respect to (p, p̃). Then, in
Theorem 3.5, the set of possible values of p̃∗ can be reduced
to {0, 1}. The case p̃∗ = 0 is called abnormal.

Furthermore, denote

U∗ (x, p, p̃)
def
= Arg min

u∈U
H (x, u, p, p̃)

∀ (x, p, p̃) ∈ G× Rn × R.
(17)

Remark 3.7: For numerical purposes, it is reasonable to
parametrize the characteristic field with respect to (p0, p̃

∗), so
that Cauchy problems can be solved instead of the boundary
value problems (15), (16). Indeed, the latter may have multi-
ple solutions, leading to the practical dilemma of obtaining a
solution that provides the optimal cost. In order to have the
uniqueness of solutions of characteristic Cauchy problems,
one needs to ensure that the extremal control map (17) is
singleton, or to specify an appropriate singleton selector of
U∗ (x∗(t), p∗(t), p̃∗) for almost all t ∈ [0, T ∗δ (x0)] , which
may also require an additional analysis.

The next result describes the aforementioned parametriza-
tion of the characteristic field and reduces the problem
of computing the transformed value function (13) at any
selected state in D0 to finite-dimensional optimization with
respect to (p0, p̃

∗) (see also [13, Theorem 3.8]).
Theorem 3.8: Let Assumptions 2.1, 2.3, 2.9, 2.12, 3.2 and

3.4 hold. For any x0 ∈ D0 and δ ∈ (0, r], the value vδ(x0)
is the minimum of

1 − exp

−
Tδ(x0, u

∗(·))∫
0

g(x∗(t), u∗(t)) dt

 (18)

over the solutions of the characteristic Cauchy problems

ẋ∗(t) = f(x∗(t), u∗(t)),

ṗ∗(t) = −DxH (x∗(t), u∗(t), p∗(t), p̃∗) ,

u∗(t) ∈ U∗ (x∗(t), p∗(t), p̃∗) ,

t ∈ Iδ(x0, u
∗(·))

def
=

{
[0, Tδ(x0, u

∗(·))] , Tδ(x0, u
∗(·)) < +∞,

[0,+∞), Tδ(x0, u
∗(·)) = +∞,

x∗(0) = x0, p∗(0) = p0,

(19)

for all vectors

(p0, p̃
∗) ∈ {(p, p̃) : p ∈ Rn, p̃ ∈ {0, 1}} . (20)

Moreover, the optimization over the bounded set

(p0, p̃
∗) ∈ {(p, p̃) ∈ Rn × R : ‖(p, p̃)‖ = 1, p̃ > 0} (21)

(instead of the unbounded set (20)) leads to the same
minimum cost.

Remark 3.9: Theorems 3.3 and 3.5 yield that, for any
x0 ∈ D0 and δ ∈ (0, r], the problem (10) admits an optimal
control strategy and the related characteristic curve satisfying
Pontryagin’s principle. Hence, the set (21) in Theorem 3.8
can be replaced with the whole unit sphere in Rn+1, i. e.,
with

(p0, p̃
∗) ∈ {(p, p̃) ∈ Rn × R : ‖(p, p̃)‖ = 1} . (22)

This eliminates the need for handling the additional con-
straint p̃∗ > 0 in numerical optimization. The sphere (22)
can be parametrized in a standard way:

p̃∗ = cos θn, p01 =

n∏
i=1

sin θi,

p0j = cos θj−1

n∏
i=j

sin θi, j = 2, n,

0 6 θ1 < 2π, 0 6 θj 6 π, j = 2, n.

(23)

Due to the periodicity in the angles θi, i = 1, n, one can
perform unconstrained optimization over them by using an
appropriate numerical method (see, e. g., [25, Chapter 10]).

Remark 3.10: Before implementing a numerical algo-
rithm based on Theorem 3.8, one does not know whether
a particular initial state x0 ∈ G belongs to the do-
main D0 of asymptotic null-controllability or not. Further-
more, there may be a nonempty set of characteristic pro-
cesses (u∗(·), x∗(·), p∗(·), p̃∗) for which Tδ(x0, u

∗(·)) =
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+∞ and the cost (18) equals 1. Thus, in order to implement
the algorithm for any particular δ ∈ (0, r] and x0 ∈
G \ B̄δ(0n) (the case x0 ∈ B̄δ(0n) is trivial and leads
to vδ(x0) = 0), it is reasonable to specify a sufficiently
small parameter δ1 ∈ (0, 1) and to stop integrating the
characteristic system (19) at such instants t = T for which
either 

‖x∗(t)‖ > δ ∀t ∈ [0, T ), ‖x∗(T )‖ = δ,

exp

−
T∫

0

g(x∗(t), u∗(t)) dt

 > δ1,
(24)

or 
‖x∗(t)‖ > δ ∀t ∈ [0, T ],

exp

−
T∫

0

g(x∗(t), u∗(t)) dt

 = δ1.
(25)

Indeed, Item 3 of Assumption 2.12 guarantees that the
function

Iδ(x0, u
∗(·)) 3 t 7−→ 1 − exp

−
t∫

0

g(x∗(s), u∗(s)) ds


strictly increases if x0 ∈ G\B̄δ(0n) (in the trivial case x0 ∈
B̄δ(0n), one has Tδ(x0, u(·)) = 0 for all u(·) ∈ U).
If the additional stopping conditions (25) hold, one can
approximate the cost (18) by the value 1 − δ1 (assigning
the maximum value 1 may cause unwanted discontinuities).
Then, in line with Theorems 2.14 and 3.1, the domain D0

can be approximated by

D0,δ,δ1
def
= {x0 ∈ G : vδ,δ1(x0) < 1− δ1}, (26)

where vδ,δ1 : G → [0, 1) is the approximation of vδ(·)
obtained in the aforementioned way.

Remark 3.11: The optimization with respect to (p0, p̃
∗) in

Theorem 3.8 may be essentially multi-extremal. In particular,
the sphere (22) may contain a relatively large region such that
the target ball B̄δ(0n) is not reached by the corresponding
state trajectories (according to Remark 3.10, the approximate
cost is constant and equals 1 − δ1 in this region). In order
to find an appropriate initial guess for an iterative method
regarding the main optimization problem, one can consider
an auxiliary shooting problem. Fix some Tmax > 0. The aim
is to find a reverse-time characteristic

[0, Tmax] 3 τ 7−→ (x̂∗(τ), p̂∗(τ), p̃∗) ∈ G×Rn×R (27)

that emanates from

‖(p̂∗(0), p̃∗)‖ = 1, p̂∗(0) 6= 0n, p̃∗ > 0,

x̂∗(0) = δ
p̂∗(0)

‖p̂∗(0)‖
∈ B̄δ(0n)

(28)

and minimizes the lowest deviation

min
τ ∈ [0,Tmax]

‖x̂∗(τ) − x0‖2 (29)

from the initial state x0. Here τ is the reverse time variable.
The conditions (28) are called forth by the terminal condition

in Pontryagin’s principle (see (15)). Thus, one arrives at
optimization with respect to (p̂∗(0), p̃∗). It is reasonable to
implement it with a certain number of randomly generated
starting points. Suppose that the numerical optimization over
the whole unit sphere of the vectors (p̂∗(0), p̃∗) leads to a
sought-after reverse-time characteristic (27) satisfying (28)
(in particular, suppose that neither of the executed iterations
returns a negligibly small ‖p̂∗(0)‖). Then (p̂∗(τ ′), p̃∗) with
τ ′ being a minimizer in (29) can serve as a starting point for
the main optimization problem.

Remark 3.12: Let δ ∈ (0, r]. If one can explicitly find
a local stabilizing feedback control strategy for all initial
states x0 ∈ B̄δ(0n) ⊆ B̄r(0n) (recall Assumption 2.3
and Remark 2.4), then it is reasonable to use it directly
after the optimal feedback control law for the problem (10)
brings a state trajectory to the ball B̄δ(0n). Note that B̄δ(0n)
may not be invariant with respect to the state trajectories of
the differential inclusion generated by this local stabilizing
feedback policy. If Ṽloc(·) is the corresponding local control
Lyapunov function defined on some open domain Ω ⊃
B̄δ(0n) and the target set B̄δ(0n) in the problem (10) is
replaced with an appropriate level set

Ωc
def
=

{
x ∈ Ω : Ṽloc(x) 6 c

}
⊆ B̄r(0n)

for some c > 0, then the mentioned invariance property will
hold for Ωc. One may also think of using Ṽloc(·) in order to
specify a nonzero terminal part of the cost functional for the
new target set Ωc. However, this may lead to a difference
between the final time of an optimal process and the first
time of reaching the target set by the related state trajectory,
i. e., to a violation of the value function representation
through the first entry times (see (11), (12)). Since the
latter plays a significant role for Theorems 3.1, 3.3 as well
as in the numerical algorithm based on Theorem 3.8 and
Remarks 3.9–3.11, the terminal part of the cost functional in
(10) is set to zero.

Remark 3.13: In some situations, Pontryagin’s principle
(Theorem 3.5) allows verification of the absence of singular
regimes, so that the nonuniqueness in the choice of extremal
control values may occur only at isolated time instants,
and the set of the vectors (p0, p̃

∗) in Theorem 3.8 can be
accordingly reduced (for example, by excluding the abnormal
case p̃∗ = 0) in order to have unique solutions of the charac-
teristic Cauchy problems (19). If one cannot exclude singular
regimes from consideration, the multi-valued extremal con-
trol map (17) may yield multiple solutions for some of the
Cauchy problems (19), which is rather difficult to handle
in a numerical algorithm (see also [13, Remark 3.12]). For
particular classes of optimal control problems, characteristics
based algorithms of computing the value functions can be
modified so as to handle singular regimes and to avoid the
nonuniqueness in the choice of extremal control values (see
[13, Examples 3.14 and 3.15]).

Remark 3.14: Characteristics based approaches (such as
the ones proposed in this work and also in [13], [16],
[17]) have a number of important advantages over well-
known grid-based methods (noted in Remark 2.18). First,

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

347



the method of characteristics allows the value functions to be
approximated separately at different initial states. Therefore,
the curse of dimensionality can be attenuated, and parallel
computations can significantly increase the numerical effi-
ciency. For a high state space dimension n > 4, constructing
global (or semi-global) value function approximations suffers
from the curse of complexity. Sparse grid techniques [18]
may help to overcome the latter if n is not too high (n 6 6)
and if the possibly multi-extremal optimization with respect
to the initial adjoint vector ((p0, p̃

∗) in Theorem 3.8) is
successfully implemented for all considered initial states
(which is not a priori guaranteed). Furthermore, treating
different initial states via the method of characteristics makes
it possible to select arbitrary bounded regions and grids in
the state space for computations. Next, the optimal feedback
control strategies at any isolated states can be obtained
directly from integrated optimal characteristics, and one does
not need to approximate partial derivatives of the value
functions, which may be an unstable procedure. However,
the developed characteristics based approaches still have
a limited range of practical applicability, as follows from
the aforementioned curse of complexity, Remark 3.13 and
[13, Remarks 2.14, 2.15, 3.11–3.13]. That is why further
extensions are worth investigating.

IV. NUMERICAL SIMULATIONS

In the following two examples, the running cost g(·, ·) is
chosen in the form

g(x, u) =
λ1

2
‖x‖2 +

λ2

2
‖u‖2 ∀ (x, u) ∈ Rn × U (30)

with positive constants λ1, λ2, and the conditions of Theo-
rem 3.8 hold. The Kruzhkov transformed CLFs and corre-
sponding feedback control strategies have been approximated
via the algorithm based on Theorem 3.8 and Remarks 3.9–
3.11. The numerical simulations have been conducted on a
relatively weak machine with 1.4 GHz Intel 2957U CPU
via a C++ code (without algorithm parallelization), and
the related average runtimes per node on a state grid are
mentioned below. More powerful machines can provide
essentially lower runtimes, especially when implementing
parallelization. Note also that the highest runtimes have been
observed for states x0 ∈ D0 located near the boundary ∂D0.

Example 4.1: Consider the linearized single-link inverted
pendulum with stationary pivot described by the system

ẋ1(t) = x2(t),

ẋ2(t) = x1(t) + u(t),

x(0) ∈ R2, u(t) ∈ U = [−a, a], t > 0.

(31)

Then the controllability domain D0 is the strip |x1+x2| < a
[26, §1.2]. Take a = 0.5, λ1 = 1, λ2 = 0.1, δ = 10−2, δ1 =
10−3, and set Tmax = 5 for the auxiliary finite-dimensional
optimization problem of Remark 3.11. The reverse- and
forward-time characteristic systems have been integrated
numerically via the second-order Heun method with the
stepsize 5 · 10−3. The preliminary shooting optimization
has been performed via the Powell routine of [25] with
the tolerance parameter 10−7, and 5 starting points on the
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Fig. 1. Example 4.1: the Kruzhkov transformed CLF and related feedback
control law on the square [−1, 1]2 of the state space.

unit sphere of the extended terminal adjoint vectors have
been randomly generated for each selected initial state. For
the main optimization with respect to the extended initial
adjoint vector (recall Theorem 3.8), the same Powell routine
has been used with the tolerance parameter 10−5 (for each
selected initial state, there has been only one starting point
obtained from the shooting optimization). The numerical
simulation results in Fig. 1 show that the approximate
controllability domain is in good agreement with the exact
one. The average runtime per state has been around 8 s.

Example 4.2: Consider the five-dimensional nonholo-
nomic integrator

ẋ1(t) = u1(t),

ẋ2(t) = u2(t),

ẋ3(t) = x1(t)u2(t) − x2(t)u1(t),

ẋ4(t) = x21(t)u2(t),

ẋ5(t) = −x22(t)u1(t),

x(0) ∈ R5, u(t) ∈ U = [−a, a]2, t > 0,

(32)

which is locally null-controllable due to [27, Exercise 1.12,
p. 212]. Take the parameters a, λ1, λ2, δ, δ1 as in Exam-
ple 4.1, and set Tmax = 2. The reverse- and forward-
time characteristic systems have been integrated numerically
via the standard fourth-order Runge–Kutta scheme with
the stepsize 5 · 10−3. The preliminary and main finite-
dimensional optimization processes have been implemented
similarly to those for Example 4.1. Fig. 2 illustrates the
computed reductions of the Kruzhkov transformed CLF and
stabilizing feedback control law to the square [−0.3, 0.3]2 on
the plane x3 = x4 = x5 = 0 of the state space (for points on
this plane outside the selected square and therefore closer to
the boundary ∂D0, the convergence rate of the optimization
methods has appeared to dramatically decrease). The average
runtime per state has been around 19 s.
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Fig. 2. Example 4.2: the reductions of the Kruzhkov transformed CLF and
related feedback control law to the square [−0.3, 0.3]2 on the plane x3 =
x4 = x5 = 0 of the state space.

V. CONCLUSION

As was already mentioned in the introduction and in Re-
mark 3.14, it seems promising to combine the characteristics
based approach of this work with the sparse grid framework
of [18] in order to obtain global approximations of CLFs
and stabilizing feedback strategies in regions of relatively
high dimensions. Furthermore, a conceptually similar method
allowing parallel implementation was developed in [28], [29]
for a different problem of computing finite-time reachable
sets.

As a future perspective, it is also relevant to design
stabilizing feedbacks for more complex nonlinear mechanical
systems [26] than the ones considered in Section IV. Then it
is reasonable to solve the preliminary optimization problem
of Remark 3.11 via an efficient numerical library that im-
plements a robust direct collocation method [18]. This may
significantly reduce computational errors.
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