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Abstract— In this note we introduce a new approach for
modeling and analyzing collective behavior of a group of agents
using moments. We represent the group of agents by their
moments and show how the dynamics of the moments can be
modeled. Then approximate trajectories of the moments can be
computed and an inverse problem is solved to recover macro-
scale properties of the group of agents. To illustrate the theory,
a numerical example with interactions between the agents is
given.

I. INTRODUCTION

In a large number of applications it is essential to un-
derstand the collective macro-scale behavior of a group of
particles or agents, while the dynamics of each agent is
modeled on a micro-scale. This occurs in applications in
biology [6], material science [19], [23] and modeling of hu-
man behavior [5], [13], [18]. In the latter, an important open
question is how to intervene in moving crowds, especially
in situations of panic [3], [26], [20]. However, such systems
typically contain a large number of agents, often too large
for considering each agent individually. Moreover, in many
cases the agents are exchangeable and tracking of each agent
may not even be desirable.

In this work we study model reduction techniques of
systems containing a large number of identical nonlinear
subsystems. We will utilize a lifting technique, combined
with approximations, by which one instead of directly ad-
dressing the nonlinear systems, considers the action of a
transfer operator similar to the Koopman operator [22]. This
technique allows for formulating a nonlinear problem into
infinite dimensional problems (cf. [22], [2]), which have
structures that allow for natural approximations in terms of
finite dimensional linear or quadratic systems. We propose
to develop this framework for applications such as crowd
dynamics and other macroscopic control problems. The
approach builds on approximating the infinite dimensional
system (i.e., the distribution of subsystems) in terms of
moments, thereby allowing for analysis, observation and
control of the overall system.

II. REPRESENTING MULTI-AGENT SYSTEMS BY
MOMENTS

Consider a multi-agent system consisting of N identical
agents. Let K ⊂ Rd be a compact set and let the state of
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agent i be xi ∈ K, for i = 1, . . . , N . The distribution of the
agents can be described in a concise way by

dµ(x) =
1

N

N∑
i=1

δ(x− xi)dx, (1)

where δ denotes the Dirac delta function. Note that such
dµ ∈ M+(K) is a nonnegative measure on K. This is a
time-dependent measure which conveys all information about
the current states of the agents in the system. We will use
an approximation of this measure in order to avoid having
to compute the dynamics of each individual agent, which
would be to expensive when the number of agents is large.

Given a set of continuous kernel functions φk ∈ C(K), for
k = 1, . . . ,M , the corresponding moments of the measure
(1) are defined by

mk =

∫
K

φk(x)dµ(x) =
1

N

N∑
i=1

φk(xi) (2)

for k = 1, . . . ,M . In order to capture the collective behavior
composed by the individuals, we will in this work approxi-
mate the dynamics of dµ(x) by considering the dynamics
of a finite set of moments {mk}Mk=1. The approximated
dynamics can then be used to estimate the moments at a
given time and finally the measure representing the particle
distribution at the given time is reconstructed via equation
(2). The approximation of the moment dynamics is discussed
in section III and IV-A, and the reconstruction is discussed
in the following subsection and in section IV-B.

A. From moments to measure - the inverse problem

The problem of recovering a nonnegative measure dµ
from a sequence of numbers m := [m1, . . . ,mM ]T is an
ill-posed inverse problem, since not all such sequences are
bone fide moment sequences. The problem of characterizing
all sequences m that are moments of some nonnegative
measures is a classical problem in mathematics [1], [12],
[14]. However, even if m is a bona fide moment sequence
there are typically an infinite set of nonnegative measures
that matches it. Although this is the case, the moments still
carry valuable information. For a given moment sequence m
it is for example possible to bound the mass of a matching
measure, both from above and below, on any compact set
[16], [10]. From a point of view of multi-agent systems this
means that, e.g., in an evacuation scenario we could still
answer questions regarding how many agents that at most
are in a certain area.

Polynomial moments have also been used previously in the
literature on crowd control [27], as they can be used in order
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to achieve a certain polygon shape [17]. Moment problems
also occur in many other application areas such as spectral
estimation [25], optimal control [9], [7], and modeling the
distribution of stochastic processes, e.g., in a chemical plant
[24] or in an electrical or mechanical system [8].

III. MODELING MULTI-AGENT SYSTEMS USING
MOMENTS

In this section a methodology to approximate the moments
dynamics is proposed. This gives a moment-based model for
collective behaviors since dµ can be reconstructed from these
moments.

A. Modeling basic systems of agents
We start with deriving the moment dynamics for systems

where the dynamics of each individual is governed by a
spacial vector field. This basic scenario is involved in many
applications, such as the crowd evacuation in a domain with
obstacles and movement analysis for a particle accelerator.
Let the dynamics of each individual be governed by

ẋi(t) = f(xi(t)), i = 1, . . . , N. (3)

Correspondingly, the dynamics of the moments satisfies

ṁk(t) =
1

N

N∑
i=1

dφk(xi(t))

dt
=

1

N

N∑
i=1

∂φk(xi(t))

∂xi(t)
f(xi(t))

=

∫
x∈K

∂φk(x)

∂x
f(x)dµ(x). (4)

If the function ∂φk

∂x f(x) is well approximated by∑M
`=1 a

k
`φ`(x), where ak` ∈ R are some coefficients, then by

the linearity of the integral and definition (2), the dynamics
of the moments system (4) can be written as

ṁ(t) =
d

dt

m1

...
mM

≈
 a

1
1 · · · a1M
...

...
aM1 · · · aMM


m1

...
mM

= Am, (5)

where m = [m1, . . . ,mM ]T . We denote the error of the
approximation for function ∂φk

∂x f(x) as

εk(x) :=
∂φk(x)

∂x
f(x)−

∑
`

ak`φ`(x). (6)

Introducing the notation λ̂(A) := λmax(A+AT

2 ), we have the
following result on the error bound of moment system (5).

Theorem 1: Let m(t) be the solution of approximated
system (5) starting from an initial condition m(0), and m(t)
be the solution of (4) starting from m(0). Then the difference
of two solutions ∆m(t) = m(t)−m(t) is bounded by

‖∆m(t)‖ ≤ ‖∆m(0)‖·eλ̂(A)t+
etλ̂(A) − 1

λ̂(A)

√∑
k

max
x∈K

ε2k(x),

if λ̂(A) 6= 0, and by

‖∆m(t)‖ ≤ ‖∆m(0)‖+ t ·
√∑

k

max
x∈K

ε2k(x)

if λ̂(A) = 0, where εk(x) is defined in (6).

B. Modeling multi-agent systems with interactions

In multi-agent systems, besides a spacial vector field, the
interactions between each pair of individuals sometimes play
a even more essential role for its collective behaviors. The
individuals possessing nonlinear interactions is governed by
the dynamics

ẋi(t) =
1

N

N∑
j=1

g(xi(t), xj(t)).

Then the exact moments dynamics is given by

ṁk(t) =
1

N

N∑
i=1

dφk(xi(t))

dt

=
1

N

N∑
i=1

∂φk(xi(t))

∂xi(t)

1

N

N∑
j=1

g(xi(t), xj(t))

=

∫
x∈K

∫
y∈K

∂φk(x)

∂x
g(x, y)dµ(x)dµ(y). (7)

Similarly to the previous case, provided that for (x, y) ∈ K2

we have a good approximation for the function ∂φk(x)
∂x g(x, y)

in the basis {φj(x)φ`(y)}j,`, i.e.,

∂φk(x)

∂x
g(x, y) ≈

M∑
`,j=1

βk`,jφ`(x)φj(y), (8)

by the linearity of the integral and (2), the moment dynamics
(7) can be approximated as

ṁk(t) ≈
N∑

`,j=1

βk`,jm`mj =: m(t)TBkm(t). (9)

The approximation error in the approximation (8) is denoted
as

εk(x, y) :=
∂φk(x)

∂x
g(x, y)−

M∑
`,j=1

βk`,jφ`(x)φj(y). (10)

Bounds similar to the ones in Theorem 1 can also be derived
for these systems, but due to lack of space we defer the
results to a forthcoming paper.

IV. ALGORITHM FOR MOMENT BASED MODELLING

Left to describe is how the approximation of the dynamics
is done in (6) and (10), and how to reconstruct a nominal
distribution from the moments.

A. Moment dynamics approximation and regularization

In a first attempt to approximate the dynamics in (6) and
(10) we use L2 approximation. This makes the approxi-
mation easy and cheap to compute, since for any linearly
independent kernels the solution can be found by solving a
finite linear system of equations (see, e.g., [15, Sec. 3.6]).
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Fig. 1: The behavior of system (14) with 104 particles.

The optimization problems we want to solve are thus

min
ak`

M∑
k=1

∥∥∥∥∥∂φk(x)

∂x
f(x)−

∑
`

ak`φ`(x)

∥∥∥∥∥
2

, (11)

min
βk
`,j

M∑
k=1

∥∥∥∥∥∥∂φk(x)

∂x
g(x, y)−

M∑
`,j=1

βk`,jφ`(x)φj(y)

∥∥∥∥∥∥
2

.

(12)

Remark 1: Another way to approximate the dynamics
in (5) and (8) is to use L∞ approximation. This actually
seems more natural, since according to Theorem 1 the L∞
norm of the approximation error is directly reflected in the
moment error ∆m. Note also that the moment error ∆m
depends not only on the instantaneous error in the dynamics,
εk in (6) and (10), but also on the propagation of the
error in time. This propagation is governed by λ̂(A) and
λ̂(Bk`), respectively. Thus it might be of interest to introduce
bounds on these quantities when approximating the moment
dynamics. These approaches will be further explored in the
subsequent research article.

B. Reconstruction of the measure

As mentioned in section II-A, from a finite set of moments
we can compute bounds on the measure [16] or obtain a
nominal estimate of the measure (1) by solving a convex
optimization problem (see, e.g., [4], [11], [21]). An example
of such a problem with approximate moment matching is the
following total variation minimization problem

min
dµ≥0,ε≥0

∫
K

|∇dµ|+ λ · ε (13)

subject to |mk −
∫
K

φk(x)dµ(x)| ≤ ε, k = 1, . . . ,M,

where λ is a regularization parameter.

V. NUMERICAL EXAMPLE

In this section the collective behaviors of a multi-agent
system is investigated using the proposed approach. The

dynamics of each individual involves nonlinear components,
which can lead to intricate collective behaviors on a macro-
scopic level. In particular, we consider the scenario where
the particles are driven by a time-invariant spacial field
plus a repulsive force between each pair of individuals. The
dynamics of particle i is

ẋi(t) = −xi +
1

N

N∑
j=1

2e−0.6(xi−xj)
2

· (xi − xj), (14)

for i = 1, 2, . . . , N , where xi ∈ R is the state of particle i.
The behaviors of a system consisting of 104 homogeneous

particles governed by dynamics (14) is simulated, and the
trajectories of all particles are shown in Figure 1. As the
result of the involved nonlinear interactions, the collective
behavior of the system gives rise to a formation consisting
of two clusters. The initial position of each agent was draw
from a uniform distribution on the interval [−1.5, 1.5], and
which of the two clusters a particular agent converges to
depends on its initial position.

In this example we choose the kernel functions be poly-
nomials, i.e., φk(x) = xk−1, where k = 1, . . . , 15, and
the compact region is chosen as K = [−2, 2]. Then the
approximations are carried out for (6) and (10) with f(x) =
−x and g(x, y) = 2e−0.6(x−y)

2

(x− y), respectively. The L2

approximation is implemented, which gives an approximated
moment systems, and the trajectories of the approximated
system are compared with that of the real moment system.
For ease of display, the initial moment trajectories for
the time interval t ∈ [0, 3] are shown in Figure 2, and
for t ∈ [3, 100] in Figure 3. The approximated dynamic
approximates the true dynamics quite well.

However, judging weather or not these are good approxi-
mations is hard by only considering the moment trajectories.
Indeed, the importance for the understanding of the collective
behavior of the underlying system is the information the ap-
proximated moments carry about the distribution of particles.
In Figure 4 we present total variation reconstructions (13)
performed at times t = 3 and t = 100. The reconstructions
are obtained from the true and approximated moments, and
we also present a histogram of the true distribution of the
particles. From the reconstructions in Figure 4 we see that
the approximated moments seem to capture the essential
collective behavior of the underlying dynamical system quite
well, and that the difference in the true and approximated
moments only gives rise to a small difference between the
reconstructed distributions. Note that these are only nominal
reconstructions and that a more thorough analysis need to be
performed in order to determine, e.g., bounds on the number
of agents in a certain region. This will be subject to further
research. Moreover, the monomial kernel functions result in
ill-conditioning in both the approximation and reconstruction
problem. Thus other basis functions such as orthogonal
polynomials will also be investigated in the future.
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Fig. 2: Trajectories for the moments of the true system and
the L2 approximated system, from time t = 0 to 3.
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Fig. 3: Moments trajectories of L2 approximated system and
the true moment trajectories, from time t = 3 to 100.
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