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Abstract— A generic network is a resistor-inductor-capacitor
(RLC) network which realises a set of impedance parameters
of dimension one more than the number of elements in the
network. We prove that such networks are minimal, in the
sense that it is not possible to realise a set of impedance
parameters of dimension n with fewer than n − 1 elements.
We provide a necessary and sufficient condition for genericity
in terms of the derivative of the mapping from element values
to impedance parameters. We then prove that a network with
a non-generic subnetwork is itself non-generic, and that any
positive-real impedance can be realized by a generic network.

I. INTRODUCTION

In recent years, there has been a resurgence of research
activity in electric circuit theory, thanks in part to the
invention of the inerter and the resulting analogy between
electric circuits and passive mechanical networks [18]. The
research has exposed several fundamental questions which
have never been fully resolved. Of particular interest and
importance is the concept of minimality. Notably, it is not
known how to find an electric circuit to realise an arbitrary
given impedance function minimally (i.e., using the least
possible number of elements) [4], [10], [12]. Surprisingly,
well-known networks which are apparently non-minimal,
such as the Bott-Duffin realization and its simplifications,
have in fact recently been shown to be minimal for certain
impedance functions [7], [8].

In this paper, we develop the notion of generic networks,
as defined in [14]. The impedance of a given resistor-
inductor-capacitor (RLC) network is the ratio of two poly-
nomials

Z(s) =
aks

k + ak−1sk−1 + · · ·+ a0
bksk + bk−1sk−1 + · · ·+ b0

, (1)

where all coefficients are non-negative and at least
one coefficient in the denominator is non-zero. Varying
the element values (resistances, inductances and capaci-
tances) over the real positive numbers generates a set
of impedances characterised by the vector of coefficients
(a0, a1, . . . , ak, b0, b1, . . . , bk). This set can be viewed as
a (real semi-algebraic) subset of (2k + 2)-dimensional Eu-
clidean space, which we call the realisability set of the
network. In Lemma 2, we show that the dimension of the
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realisability set is no greater than one plus the number of
elements in the network. A network is called generic if the
dimension of the realisability set is exactly equal to one more
than the number of elements in the network (Definition 1). In
Theorem 1, we provide a necessary and sufficient condition
for genericity in terms of the derivative of the mapping from
element values to impedance parameters. As a corollary, we
show that the number of resistors in a generic network is
at most one more than the order of the impedance. The
genericity concept is explored through several examples in
Section V. Section VI then considers interconnection, and it
is proved that a network with a non-generic subnetwork is
itself non-generic (Theorem 2). Finally, we outline a proof
that the Bott-Duffin networks are generic, and conclude that
any positive-real impedance can be realised by a generic RLC
network (Theorem 3).

II. NOTATION

R real numbers
R>0 positive real numbers
R≥0 non-negative real numbers
Rn (column) vectors of real numbers
(x1, . . . , xn) column vector

III. PRELIMINARIES

Consider an RLC two-terminal network N with m ≥
1 elements (resistors, capacitors or inductors) and corre-
sponding parameters E1, . . . , Em ∈ R>0. It follows from
Kirchhoff’s tree theorem [16, Section 7.2] that the driving-
point impedance of N takes the form

Z(s) =
fks

k + fk−1sk−1 + · · ·+ f0
gksk + gk−1sk−1 + · · ·+ g0

(2)

where fi = fi(E1, . . . , Em), gj = gj(E1, . . . , Em) for 0 ≤
i, j ≤ k are polynomials in E1, . . . , Em with nonnegative
integer coefficients, at least one gj is not identically zero, and
not both of fk and gk are identically zero. We refer to the
integer k as the order of the impedance, which cannot exceed
the number of reactive elements (capacitors and inductors) in
the network. Consider also the candidate impedance function
(1), where ai, bj ∈ R≥0 for 0 ≤ i, j ≤ k. For the equality of
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(2) and (1) it is necessary and sufficient that

a0 = cf0(E1, . . . , Em),
...

ak = cfk(E1, . . . , Em),
b0 = cg0(E1, . . . , Em),

...
bk = cgk(E1, . . . , Em)





(3)

for some c > 0. We define the realisability set of N to be
the set

S = {(a0, . . . , ak, b0, . . . , bk) such that (3) holds,
E1, . . . , Em ∈ R>0 and c ∈ R>0} .

Let x = (x1, . . . , xm+1) = (E1, . . . , Em, c) ∈ Rm+1
>0 and

define the function h : Rm+1
>0 → R2k+2

≥0 as follows:

h (x) = c(f0, . . . , fk, g0, . . . , gk)

Then S is the image of Rm+1
>0 under h.

The set S can also be seen to be the projection onto the
first 2k + 2 components of the real semi-algebraic set

Sf = {(a0, . . . , ak, b0, . . . , bk, E1, . . . , Em, c)

such that (3) holds, E1, . . . , Em ∈ R>0 and c ∈ R>0}
in R2k+m+3

≥0 . Hence S is a real semi-algebraic set using
the Tarski-Seidenberg theorem [1]. We use the notation
π{r1,...,rp}(·) to denote the projection of a real semi-algebraic
set onto the components with indices r1, . . . , rp. Thus, S =
π{1,...,2k+2}(Sf ).

IV. A NECESSARY AND SUFFICIENT CONDITION FOR
GENERICITY

The dimension dim(S) of a semi-algebraic set S is defined
as the largest d such that there exists a one-to-one smooth
map from the open cube (−1, 1)d ⊂ Rd into S [2].

Lemma 1: For a semi-algebraic set S ⊂ Rn let π =
π{r1,...,rp} for some indices r1, . . . , rp with p < n, then
dim(π(S)) ≤ dim(S) [2, Lemma 5.30].

Lemma 2: For an RLC two-terminal network N with
m ≥ 1 elements and realisability set S then dim(S) ≤ m+1.

Proof: Given Ei,0 > 0 for 1 ≤ i ≤ m and c0 > 0
there exists ε > 0 such that Ei = Ei,0 + εxi > 0 and
c = c0 + εxm+1 > 0 for (x1, . . . , xm+1) ∈ (−1, 1)m+1.
Hence there is a one-to-one mapping from (−1, 1)m+1 into
some neighbourhood of any point in Sf , which means that
dim(Sf ) = m+1. Note that this neighbourhood contains all
points in Sf that are sufficiently close to the given point
in the Euclidean metric. Such a neighbourhood in Sf is
homeomorphic to the unit cube in Rm+1, hence to the unit
sphere in Rm+1, hence not homeomorphic to a unit sphere
in any other dimension [6, Theorem 2.26]. The result now
follows from Lemma 1.

We now state the definition of a generic network proposed
in [14]. A similar notion of “non-redundant” system appears
in [17], where a necessary and sufficient condition for non-
redundancy is stated.

Definition 1: An RLC two-terminal network N contain-
ing m elements is generic if dim(S) = m + 1 where S is
the realisability set of the network.

We introduce the matrix D(E1, . . . , Em) defined by:

D =




∂f0
∂E1

· · · ∂f0
∂Em

f0
...

...
...

∂fk
∂E1

· · · ∂fk
∂Em

fk
∂g0
∂E1

· · · ∂g0
∂Em

g0
...

...
...

∂gk
∂E1

· · · ∂gk
∂Em

gk




(4)

and note that the derivative of h is given by h′ =
D diag(c, . . . , c, 1).

Theorem 1: Let N be an RLC two-terminal network with
m ≥ 1 elements and realisability set S. Then N is generic if
and only if there exists E0 = (E1,0, . . . , Em,0) ∈ Rm>0 such
that rank(D(E0)) = m+ 1.

Proof: Assume that there exists E0 ∈ Rm>0 such that
rank(D(E0)) = m+ 1 and note that rank(h′(x0)) = m+ 1
for x0 = (E0, c) for any c > 0. Let A be a square
submatrix of h′(x0) consisting of rows l1, . . . , lm+1 for
which det(A) 6= 0. Let ĥ(x) be the restriction of h(x) to
the components l1, . . . , lm+1. Then, by the inverse function
theorem [15, Theorem 9.24], ĥ(x) is a one-to-one mapping
from a neighbourhood of x0 into Rm+1

>0 , which means that
h(x) is a one-to-one mapping from a neighbourhood of x0

into S. Hence dim(S) = m + 1 which means that N is
generic.

Conversely, assume that dim(S) = m + 1. Then there
exists x0 = (E1,0, . . . , Em,0, c0) ∈ Rm+1

>0 such that h(x)
is a one-to-one mapping from a neighbourhood of x0 into
S. Then there exists a smooth inverse w(y) from a neigh-
bourhood of y0 = h(x0) within S into a neighbourhood of
x0. In particular w(h(x)) = x in a neighbourhood of x0.
Using the chain rule [15, Theorem 9.15] w′(y0)h′(x0) = I ,
so rank(h′(x0)) = m + 1. Writing x0 = (E0, c) then
rank(D(E0)) = m+ 1, which completes the proof.

Corollary 1: If an RLC two-terminal network N con-
tains elements E1, . . . , Em ∈ R>0 and has impedance
f(s)/g(s), then N is generic if and only if there exist
E0 = (E1,0, . . . , Em,0) ∈ Rm>0 such that, for x ∈ Rm+1,
(

∂f
∂E1

∂f
∂E2

· · · ∂f
∂Em

f
∂g
∂E1

∂g
∂E2

· · · ∂g
∂Em

g

)

E0

x = 0 ⇒ x = 0 . (5)

Proof: It can be easily verified that the left-hand side of
(5) yields two polynomials in s whose coefficients are given
by the rows of the vector Dx, where D is defined in (4).
In order for both polynomials to be zero, each coefficient of
each power of s has to be zero, from which we can conclude
that the left-hand side of (5) is equivalent to Dx = 0. By
Theorem 1, the networkN is generic if and only if the matrix
D in (4) is full column rank for some E1, . . . , Em ∈ R>0.
This is equivalent to

x ∈ Rm+1 and Dx = 0 ⇒ x = 0 .
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ThereforeN is generic if and only if (5) holds for x ∈ Rm+1.

Corollary 2: Let N be a generic RLC network whose
impedance takes the form of (2). Then the number of
resistors in N is less than or equal to k + 1.

Proof: Let n be the number of resistors in N and
m be the total number of elements. Then in order that
rank(h′(x0)) = m+ 1 it is necessary that 2k + 2 ≥ m+ 1.
Given that k ≤ m− n, the result follows.

V. EXAMPLES

The necessary and sufficient condition in Theorem 1,
together with the necessary condition in Corollary 2, provides
an efficient way of verifying genericity of RLC networks
which does not rely on obtaining the realisability conditions
of the networks. Throughout this section we will say that
rank(D) = p, where the general expression for D is given
in (4), if p = maxE1,...,Em∈R>0(rank(D(E1, . . . , Em))).

Example 1: The network in Fig. 1 is a first trivial example
of a non-generic network. This can be verified through
Corollary 2 or by considering that the network can be
reduced to a network consisting of a single resistor, which
defines a realisability set of dimension two.

1

Fig. 1. A simple non-generic network.

Example 2: The so-called “Ladenheim Catalogue” is the
set of all essentially distinct RLC networks with at most
five elements of which at most two are reactive [13] [14].
To obtain the set, all basic graphs with at most five edges
are listed and populated with the three types of components.
A number of networks which contain a series or parallel
connection of the same type of component are then trivially
simplified: it can be shown in a similar way to Example 1 that
such networks are all non-generic. This initial enumeration
leads to 148 networks, of which another 40 non-generic
networks can be eliminated. An example of one of the 40
non-generic networks eliminated in the last step is shown in
Fig. 2. The impedance of this network is a biquadratic, with

f2 = C1C2(R1R2 +R1R3 +R2R3) ,

f1 = C1(R1 +R3) + C2(R2 +R3) ,

f0 = 1 ,

g2 = C1C2(R2 +R3) ,

g1 = C1 ,

g0 = 0 .

Since g0 = 0, it follows that one row in the matrix D ∈
R6×6
≥0 is identically zero. Therefore rank(D) ≤ 5 and from

Theorem 1 the network is non-generic. It can also be seen,
through a Zobel transformation (see [14]), that the network
reduces to a generic four-element network. The remaining
108 networks in the catalogue have been shown to be
generic in [14], and an example is provided in Fig. 3(a).
The impedance of this network (which has also been studied

R1
C1

R3

R2
C2

1

Fig. 2. Non-generic network.

in [11]) is a biquadratic and it can be easily computed that
the determinant of the matrix D ∈ R6×6

≥0 is equal to

− C1L1

(
C1R1R2(R1R2 +R2R3) + L1R3(R2 +R3)

)
×

(
C1R1R2(R2 + 2R3)(R1 +R3)− L1(R2 +R3)(2R1 +R3)

)
,

which is not identically zero, hence rank(D) = 6. Therefore,
the network is generic by Theorem 1 and defines a realis-
ability set S of dimension six.

C1 R1

L1

R2 R3

R1
C1

R2 L1

(a) (b)

1

Fig. 3. Two generic networks (networks #95 and #97, respectively) from
the Ladenheim Catalogue [14].

Example 3: The four-element network in Fig. 3(b) is an-
other generic network from the Ladenheim Catalogue which
realises a biquadratic impedance. The determinant of the 5×5
submatrix obtained from D ∈ R6×5

≥0 by removing the last row
is equal to

R2C1(R1R2C1 − L1) ,

which is not identically zero, hence rank(D) = 5. There-
fore, the network is generic by Theorem 1 and defines a
realisability set S of dimension five. Since all six impedance
coefficients are non-zero, this means that they must be
interdependent. In fact we can show that

(f2g0 + f0g2)(f2g0 + f0g2 − f1g1) + f0f2g
2
1 = 0 ,

as also derived in [14].
Example 4: By considering an additional resistor in the

generic network of Fig. 3(a) we obtain the network of Fig. 4.
This network is no longer generic, by Corollary 2. In fact,
it can be computed that the impedance is a biquadratic and
that D ∈ R6×7

≥0 , hence rank(D) ≤ 6. This network has been
considered in [9], [19].

Example 5: The impedance of the three-reactive five-
element network in Fig. 5 (which has been analysed in [11])
is a bicubic, and D ∈ R8×6

≥0 in this case. The determinant of
the submatrix obtained by removing the last two rows of D
is equal to

R3
1L

2
1C

2
1C

3
2 (R1R2C1 −R2

2C2 − L1) ,
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1

Fig. 4. Non-generic network.

R2
C2

L1

R1

C1

1

Fig. 5. Three-reactive five-element generic network.

1

Fig. 6. Three-reactive five-element non-generic network.

which is not identically zero, hence rank(D) = 6. Therefore,
the network is generic by Theorem 1 and defines a realis-
ability set of dimension six.

Example 6: The impedance of the three-reactive five-
element network in Fig. 6 is a biquadratic, with g0 = 0.
This is an example where the order of the impedance k = 2
is strictly less than the number of reactive elements. It can
be computed that D ∈ R5×6

≥0 , hence rank(D) ≤ 5 necessarily
and the network is non-generic by Theorem 1.

Example 7: The seven-element network in Fig. 7 (see
Fig. 3 in [7]) is another example where the order of the
impedance (k = 4) is strictly less than the number of reactive
elements in the network, as pointed out in [7]. This loss
of degree can be seen from Kirchoff’s tree theorem (see
[16, Section 7.2]) since there can be no spanning tree of
the network which contains all three capacitors. In this case
D ∈ R10×8

≥0 and it can be computed that the determinant
of any square submatrix of D formed by deleting any two
rows is non-zero. Hence the network is generic and defines
a realisability set of dimension eight. Note that this means
that a lower than expected order of the impedance need not
imply that the network is non-generic.

Example 8: The network in Fig. 8 has the same structure
as the Bott-Duffin construction for the biquadratic minimum
function Z(s) with Z(jω1) = jω1X1, where ω1 > 0 and
X1 > 0 [3]. Assuming that all network elements can vary
freely, it is interesting to see whether the network is generic.
The network has eight elements and its impedance is of
sixth degree, hence D ∈ R14×9

≥0 . It can be computed that
rank(D) = 9, hence the network is generic and defines a

1

Fig. 7. Five-reactive element generic network from [7] of fourth order.

C3

L3

L1
C1

R1

L2

C2

R2

1

Fig. 8. Bott-Duffin network for the realisation of a biquadratic.

N0 N 0

N

1

Fig. 9. Two-terminal network N with a two-terminal subnetwork N ′.

realisability set of dimension nine. It can also be verified
that by adding a resistor in series or in parallel to the
network in Fig. 8 the resulting network is still generic (with
a realisability set of dimension ten).

VI. INTERCONNECTION OF GENERIC NETWORKS

In this section we look at the genericity of interconnec-
tions of networks, and prove the result that having a non-
generic subnetwork embedded within a network leads to non-
genericity of the overall network.

Lemma 3: Consider an RLC two-terminal network N
with the structure shown in Fig. 9, in which the network N0

comprises m ≥ 1 elements with parameters E1, . . . , Em ∈
R>0 and the network N ′ comprises n ≥ 1 elements with
parameters Em+1, . . . , Em+n ∈ R>0. If the driving-point
impedance of N ′ is f(s)/g(s), then the impedance of N
takes the form

Z(s) =
u(s)f(s) + v(s)g(s)

w(s)f(s) + x(s)g(s)
, (6)

where u(s), v(s), w(s) and x(s) are polynomials in s whose
coefficients are polynomials in E1, . . . , Em, while f(s) and
g(s) are polynomials whose coefficients are polynomials in
Em+1, . . . , Em+n.

Proof: Let G be the undirected graph with edges
corresponding to the network elements E1, . . . , Em ofN and
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one edge corresponding to network N ′. Let G̃ be the graph
obtained by connecting together the vertices corresponding
to the driving-point terminals in G. Denote by fG(s) the
Laurent polynomial given by the sum over all spanning
trees in G of the product of the admittances of all edges
in each spanning tree, and similarly for fG̃(s). Then, by
Kirchhoff’s matrix tree theorem, the impedance of N is
equal to fG̃(s)/fG(s) (see [16, Section 7.2]). Given that the
admittance of one of the edges in G and G̃ is g(s)/f(s), it
follows that the impedance of N takes the form (6).

Theorem 2: Let N and N ′ be as in Lemma 3. If the
subnetwork N ′ is non-generic then N is non-generic.

Proof: Let f(s), g(s), u(s), v(s), w(s) and x(s) be as
in Lemma 3. Then the impedance Z(s) = a(s)/b(s) of N
takes the form (6), and we can write

(
a(s)
b(s)

)
= M

(
f(s)
g(s)

)
, (7)

where
M =

(
u(s) v(s)
w(s) x(s)

)

is a matrix of polynomials whose coefficients depend only
on E = (E1, . . . , Em), while f(s) and g(s) are polynomials
whose coefficients depend on E′ = (Em+1, . . . , Em+n). By
Corollary 1, the network N is generic if and only if

x ∈ Rm+n+1 and Dx = 0 ⇒ x = 0 , (8)

where

D =

(
∂a
∂E1

· · · ∂a
∂Em+n

a
∂b
∂E1

· · · ∂b
∂Em+n

b

)

Ē

,

for some Ē = (Ē1, . . . , Ēm+n) ∈ Rm+n
>0 . Since M is

independent of E′, it follows from (7) that

D =
(
∗
∣∣MD′

)
Ē
,

where the first block of the matrix corresponds to the partial
derivatives of a(s) up to Em and

D′ =

(
∂f

∂Em+1
· · · ∂f

∂Em+n
f

∂g
∂Em+1

· · · ∂g
∂Em+n

g

)
.

Since N ′ is non-generic, given any E′ ∈ Rn>0 there exists a
real vector y 6= 0 such that D′E′y = 0. It follows that, for
any given Ē ∈ Rm+n

>0 , there exists 0 6= y ∈ Rn+1 such that

D

(
0
y

)
=
(
∗
∣∣MD′

)
Ē

(
0
y

)
= 0 ,

which contradicts (8). Therefore N is non-generic.
Corollary 3: A necessary condition for the series or par-

allel connection of two networks N1 and N2 to be generic
is that N1 and N2 are generic.

Proof: This follows from Theorem 2.
Remark 1: It is worth noting that the necessary condition

in Corollary 3 is not sufficient for a series connection of
two networks to be generic. The networks in Figs. 1 and 2
are simple examples of non-generic networks consisting of
a series connection of two generic networks.

Remark 2: By Theorem 2, we can conclude that any
network containing a series or parallel connection of the
same type of component is non-generic. This allows us
to discard any such network from the canonical set of
essentially distinct RLC networks with at most five elements
of which at most two are reactive (the so-called “Ladenheim
Catalogue” [13] [14]) as discussed in Example 2.

Lemma 4: Consider an RLC two-terminal network N
with the structure shown in Fig. 10, where the subnetwork
N1 is generic and does not have an impedance zero at the
origin. Then N is generic.

Proof: Let N1 have impedance f(s)/g(s) of order n
and network elements E = (E1, . . . , Em) ∈ Rm>0. Then the
impedance Z(s) = a(s)/b(s) of N is given by

Z(s) =
R(f(s) + sLg(s)) + sLf(s)

f(s) + sLg(s)
.

Since N1 is generic, it follows from Corollary 1 that

y ∈ Rm+1 and D1y = 0 ⇒ y = 0 , (9)

where

D1 =

(
∂f
∂E1

· · · ∂f
∂Em

f
∂g
∂E1

· · · ∂g
∂Em

g

)

E0

for some E0 = (E1,0, . . . , Em,0) ∈ Rm>0. To prove that N
is generic we need to show that, for x ∈ Rm+3,
(
∂a
∂R

∂a
∂L

∂a
∂E1

· · · ∂a
∂Em

a
∂b
∂R

∂b
∂L

∂b
∂E1

· · · ∂b
∂Em

b

)

Ē

x = 0 ⇒ x = 0 , (10)

for some Ē = (R̄, L̄, Ē1, . . . , Ēm) ∈ Rm+2
>0 . To show this,

we let Ēi = Ei,0 (i = 1, . . . ,m) and we pick R̄, L̄ ∈ R>0

arbitrarily. Then, since a(s) and b(s) depend on E1, . . . , Em
through f(s) and g(s), by the chain rule (10) is equivalent
to(

∂a
∂R

∂a
∂L

∂a
∂f

∂a
∂g

∂b
∂R

∂b
∂L

∂b
∂f

∂b
∂g

)

E0

(
I2 0
0 D1

)
x = 0 ⇒ x = 0 (11)

where I2 is the two-by-two identity matrix. Since (9) holds,
it then suffices to show that

(
∂a
∂R

∂a
∂L

∂a
∂f

∂a
∂g

∂b
∂R

∂b
∂L

∂b
∂f

∂b
∂g

)



u
v

w(s)
z(s)


 = 0 ⇒




u
v

w(s)
z(s)


 = 0 (12)

for any given real scalars u, v and polynomials w(s), z(s)
of degree less than or equal to n. The left-hand side of (12)
yields the following two polynomial equations:

u(sLg(s) + f(s)) + v(Rg(s) + f(s))s+ w(s)(sL+R)

+ sRLz(s) = 0 (13)
svg(s) + w(s) + sLz(s) = 0 . (14)

Subtracting (14) multiplied by R from (13) we obtain

u(sLg(s) + f(s)) + vsf(s) + sLw(s) = 0 . (15)

We let s = 0 in (14) and (15) to conclude that w(0) = 0
and u = 0 (since f(0) 6= 0). Equation (15) now reduces
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R

L

N1

1

Fig. 10. Two-terminal network with a generic subnetwork N1.

R

L

C N1

1

Fig. 11. Two-terminal network with a generic subnetwork N1.

to vf(s) + Lw(s) = 0, and again by setting s = 0 we can
conclude that v = 0. Finally, w(s) = z(s) = 0 easily follows
from (14) and (15). We have therefore shown that (12) holds,
hence N is generic.

Lemma 5: Consider an RLC two-terminal network N
with the structure shown in Fig. 11, where the subnetwork
N1 is generic. Then N is generic.

Proof: Let N1 have impedance f(s)/g(s) of order n
and network elements E = (E1, . . . , Em) ∈ Rm>0. Then the
impedance Z(s) = a(s)/b(s) of N is given by

Z(s) =
Lsg(s) + (1 + αs2)f(s)

GLsg(s) + (1 + αs2)(Gf(s) + g(s))
,

where α = LC and G = 1/R. By Corollary 1, N is generic
if and only if

x ∈ Rm+4 and Dx = 0 ⇒ x = 0 , (16)

where

D =

(
∂a
∂G

∂a
∂L

∂a
∂α

∂a
∂E1

· · · ∂a
∂Em

a
∂b
∂G

∂b
∂L

∂b
∂α

∂b
∂E1

· · · ∂b
∂Em

b

)

E0

,

for some E0 = (G0, L0, α0, E1,0, . . . , Em,0) ∈ Rm+3
>0 .

By the same argument as Lemma 4, applying the chain
rule we can conclude that (16) holds if, for any given
(E1, . . . , Em) ∈ Rm>0, there exist G,L ∈ R>0 such that
the following holds

(
∂a
∂G

∂a
∂L

∂a
∂α

∂a
∂f

∂a
∂g

∂b
∂G

∂b
∂L

∂b
∂α

∂b
∂f

∂b
∂g

)



u
v
w
y(s)
z(s)




= 0 ⇒




u
v
w
y(s)
z(s)




= 0 (17)

for any given real scalars u, v, w and polynomials y(s), z(s)
of degree less than or equal to n. The left-hand side of (17)
yields the following two polynomial equations:

sg(s)v + s2f(s)w + (1 + αs2)y(s) + Lsz(s) = 0 , (18)
sg(s)(Lu+Gv + sw) + sG(sf(s)w + Lz(s))

+ (1 + αs2)(f(s)u+Gy(s) + z(s)) = 0 . (19)

R

C

N1

L

N d
1

| {z }
f(s)/g(s)

| {z }
f̂(s)/ĝ(s)

1

Fig. 12. Two-terminal network with generic subnetworks N1 and N d
1 .

Subtracting (18) multiplied by G from (19) we obtain

Lsg(s)u+ (1 + αs2)(f(s)u+ z(s)) + s2g(s)w = 0 . (20)

Since g(s) cannot vanish identically on the imaginary axis,
then we can pick α > 0 such that g(j/

√
α) 6= 0. Substituting

s = j/
√
α in (20) we obtain g(j/

√
α)(Lju− w/√α) = 0,

the only real solution of which is u = w = 0. From (20) it
now follows that z(s) = 0. Equation (18) now reduces to

sg(s)v + (1 + αs2)y(s) = 0

from which we conclude, by substituting s = j/
√
α, that v =

0. From the same equation we then conclude that y(s) = 0.
We have therefore shown that (17) holds, hence N is generic.

Lemma 6: Let N be an RLC network and N d its dual
network. If N is generic then so is N d.

Proof: Let N have impedance f(s)/g(s) and net-
work elements E1, . . . , Em. Then N d will have impedance
f̂(s)/ĝ(s) = g(s)/f(s) and network elements Ê1, . . . , Êm
such that f(s, E1, . . . , Em) = ĝ(s, Ê1, . . . , Êm) and
g(s, E1, . . . , Em) = f̂(s, Ê1, . . . , Êm). We can then easily
conclude by applying Corollary 1 that if N is generic then
also N d is generic.

Lemma 7: Let N be an RLC two-terminal network with
the structure shown in Fig. 12, where the network N1 is
generic and has no impedance pole at the origin, and N d

1

denotes its dual. Then N is generic.
Proof: Let network N1 have element values E =

(E1, . . . , Em) ∈ Rm>0, and let its dual N d
1 have ele-

ment values Ê = (Ê1, . . . , Êm) ∈ Rm>0. Since N1 is
generic, by Corollary 1 we can find element values E0 =
(E1,0, . . . , Em,0) such that

t1 ∈ Rm+1 and D1t1 = 0 ⇒ t1 = 0 , (21)

where

D1 =

(
∂f
∂E1

· · · ∂f
∂Em

f
∂g
∂E1

· · · ∂g
∂Em

g

)

E0

, (22)

and such that, if the impedance of N1 is q(s)/d(s), q(s) and
d(s) are coprime. By taking the network dual of N1, we then
obtain element values Ê0 = (Ê1,0, . . . , Êm,0) for N d

1 such
that

t2 ∈ Rm+1 and D2t2 = 0 ⇒ t2 = 0 , (23)
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where

D2 =

(
∂f̂

∂Ê1
· · · ∂f̂

∂Êm
f̂

∂ĝ

∂Ê1
· · · ∂ĝ

∂Êm
ĝ

)

Ê0

, (24)

with the resulting impedance of N d
1 being d(s)/q(s).

Let Z(s) = a(s)/b(s) be the impedance of the network
in Fig. 12. Then Z(s) may be written as

Z(s) =
a(s)

b(s)
=
f(s)

g(s)
+
f̂(s)

ĝ(s)
(25)

=
d(s)R+ q(s)(1 + sRC)

d(s) + sCq(s)
+

sLd(s)

d(s) + sLq(s)
,

where f(s)/g(s) and f̂(s)/ĝ(s) are the impedances of the
two subnetworks indicated in Fig. 12. From the expressions
in (25) we see that, if L 6= C, then g(s) and ĝ(s) are
necessarily coprime, since d(0) 6= 0 by assumption and q(s)
and d(s) are coprime. We can also easily see from (25) that
f̂(0) = 0, ĝ(0) 6= 0, f(0) 6= 0, g(0) 6= 0. Furthermore,
denoting deg(g(s)) by n, then deg(ĝ(s)) = n and deg(f(s)),
deg(f̂(s)) ≤ n.

We will now show that,

x ∈ R2m+4 and Dx = 0 ⇒ x = 0 , (26)

where

D=

(
∂a
∂R

∂a
∂C

∂a
∂E1
· · · ∂a

∂Em

∂a
∂L

∂a
∂Ê1
· · · ∂a

∂Êm
a

∂b
∂R

∂b
∂C

∂b
∂E1
· · · ∂b

∂Em

∂b
∂L

∂b
∂Ê1
· · · ∂b

∂Êm
b

)
, (27)

for element values E0, Ê0, R0, L0, C0, where L0 6= C0. By
the chain rule, D may be expressed as

D =

(
∂a
∂f

∂a
∂g

∂a
∂f̂

∂a
∂ĝ

∂b
∂f

∂b
∂g

∂b
∂f̂

∂b
∂ĝ

)

E0,R0,C0,Ê0,L0︸ ︷︷ ︸
M

(
Q1 0
0 Q2

)

︸ ︷︷ ︸
N

, (28)

where

Q1 =

(
∂f
∂R

∂f
∂C

∂f
∂E1

· · · ∂f
∂Em

∂g
∂R

∂g
∂C

∂g
∂E1

· · · ∂g
∂Em

)

E0,R0,C0

,

Q2 =

(
∂f̂
∂L

∂f̂

∂Ê1
· · · ∂f̂

∂Êm
f̂

∂ĝ
∂L

∂ĝ

∂Ê1
· · · ∂ĝ

∂Êm
ĝ

)

Ê0,L0

. (29)

We therefore need to show that

x ∈ R2m+4 and Dx = MNx = 0 ⇒ x = 0 . (30)

Consider a fixed but arbitrary x ∈ R2m+4, let y = Nx, and
note that y takes the form (u(s), v(s), w(s), z(s)), where
u(s), v(s), w(s), z(s) are polynomials of degree less than
or equal to n and w(0) = 0 (since f̂(0) = 0). We will first
show that if My = 0 then y = α(f(s), g(s),−f̂(s),−ĝ(s))
for some real constant α. The matrix equation My = 0
yields the following two polynomial equations:

ĝ(s)u(s) + f̂(s)v(s) + g(s)w(s) + f(s)z(s) = 0 , (31)
ĝ(s)v(s) + g(s)z(s) = 0 . (32)

Equation (32) can be written as z(s)/v(s) = −ĝ(s)/g(s),
from which we conclude that v(s) = αg(s) for some real
constant α, since g(s) and ĝ(s) are coprime polynomials with
deg(g(s)) = deg(ĝ(s)) = n, while deg(v(s)), deg(z(s)) ≤
n. From (32) it then follows that z(s) = −αĝ(s). Equation
(31) now reduces to

ĝ(s)(u(s)− αf(s)) + g(s)(w(s) + αf̂(s)) = 0 . (33)

We recall that w(0) = f̂(0) = 0 and ĝ(0) 6= 0. Therefore, for
s = 0, (33) yields ĝ(0)(u(0)− αf(0)) = 0, from which we
conclude that u(s)−αf(s) is divisible by s. But by writing
(33) as

w(s) + αf̂(s)

u(s)− αf(s)
= − ĝ(s)

g(s)

we can conclude that u(s)−αf(s) is also divisible by g(s),
since g(s) and ĝ(s) are coprime and deg(u(s)−αf(s)) ≤ n.
Therefore u(s) − αf(s) is divisible by sg(s) (which has
degree n + 1), from which it follows that u(s) = αf(s)
necessarily. Equation (31) finally gives w(s) = −αf̂(s).

At this point we have shown that

x ∈ R2m+4 and MNx = 0 ⇒ Nx = α




f(s)
g(s)

−f̂(s)
−ĝ(s)


 . (34)

If we partition x into two vectors x1 and x2 each of
dimension m+2, the right-hand side of (34) may be written
as

(
Q1 0
0 Q2

)(
x1

x2

)
− α




f(s)
g(s)

−f̂(s)
−ĝ(s)


 = 0 ,

which is equivalent to
(
Q1

f(s)
g(s)

)(
x1

−α

)
= 0 , (35)

(
Q2

−f̂(s)
−ĝ(s)

)(
x2

−α

)
= 0 . (36)

It follows from (21)–(24) and the proof of Lemma 4 that

t1 ∈ Rm+3 and
(
Q1

f(s)
g(s)

)
t1 = 0 ⇒ t1 = 0 ,

and t2 ∈ Rm+2 and Q2t2 = 0 ⇒ t2 = 0 .

Therefore we can conclude from (35) that x1 = 0, α = 0
and from (36) that x2 = 0. Therefore (30) holds and, by
Corollary 1, the network N is generic.

Remark 3: Lemma 7 may be generalised to the series
connection of two RLC two-terminal networks N1 and N2.
Namely, under the following assumptions we may conclude
that the series connection of N1 and N2 is generic:
• The two networks are generic;
• One of the two networks has an impedance zero at the

origin, and the other does not;
• The two networks do not have any coincident

impedance poles for almost all element values.
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Finally in this paper, we outline a proof of the genericity
of the Bott-Duffin networks. We note that, if the impedance
function Z(s) is a biquadratic, then the Bott-Duffin method
leads to a generic network with the structure of Fig. 8, as
already discussed in Example 8. However, it remains to con-
sider the cases for which the impedance is not biquadratic.

Theorem 3: Any positive-real impedance can be realised
by a generic RLC network.

Proof: The Bott-Duffin theorem states that any positive-
real impedance function can be realised by an RLC network
[3]. It therefore suffices to show that each of the steps
involved in the construction of such a network N preserves
genericity (see [5] for a textbook explanation of the Bott-
Duffin procedure).

To obtain a network N to realise an arbitrary given
positive-real function Z(s), the steps in the Bott-Duffin
procedure (coupled with the so-called Foster preamble) are
as follows:

1) Subtract any imaginary axis impedance poles (resulting
in an impedance of lower order).

2) Subtract a constant equal to the smallest value of
Re(Z(jω)) for ω ∈ R ∪ ∞, resulting in a net-
work whose impedance Ẑ(s) has no imaginary axis
impedance poles and satisfies one of the following
properties:

a) Ẑ(s) has an admittance pole at the origin or at
infinity;

b) Ẑ(s) has an admittance pole elsewhere on the
imaginary axis;

c) Ẑ(s) is a minimum function.
In each case, the impedance can then be reduced to
one of lower order.

The network realisations corresponding to cases 1, 2a, 2b
and 2c each take the form of one of the networks in Figs.
10–12, or can be obtained from such networks through a
combination of frequency inversion and duality transforma-
tions (in certain cases it is necessary to replace the resistor
by a short or open circuit). That genericity is preserved
in each case can be shown using Lemmas 4–7 and minor
modifications thereof. The Bott-Duffin procedure continues
inductively until the resulting impedance has order zero. This
final impedance can be realised by a single resistor, which
itself is generic. This establishes the genericity of all of the
other networks in the inductive procedure, whereupon we
conclude that N is generic.
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