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Abstract— In this paper, we consider the stability of a
hyperbolic system of the interconnected Schrödinger and wave
equations, where the only distributed dissipative control is
forced at the wave equation and there is no control fixed at the
Schrödinger. The Schrödinger can be exponentially stabilized
by the inter-change transmission between the Schrödinger and
wave at the interconnection boundary. We show that the whole
system is well-posed and exponentially stable in the energy
Hilbert space. A numerical computation is presented for the
distributions of the spectrum of the whole system, and it is
found that the spectrum of the Schrödinger depends largely
on the interconnected transmission parameter and the decay of
the wave equation.

I. INTRODUCTION

Extensive literature exists on control of the Schrödinger

equation (see [3]-[8], [10], or [13]). In this paper, we

consider the control problem of a hyperbolic system of the

interconnected Schrödinger-wave equations (as shown in Fig.

1):























yt(x, t) + iyxx(x, t) = 0, 0 < x < 1, t > 0,
ztt(x, t) = zxx(x, t) + U(t), 1 < x < 2, t > 0,
y(0, t) = z(2, t) = 0, t ≥ 0,
y(1, t) = kzt(1, t), t ≥ 0,
zx(1, t) = −ikyx(1, t), t ≥ 0,

(1)

where k 6= 0 ∈ R is a real constant, the Schrödinger and

wave equations are connected at the boundary x = 1, and

y and z denote the displacements of the Schrödinger and

wave equations respectively. The distributed control U(t) is

forced only at the wave and there is no control fixed to

the Schrödinger. The energy suppression of the Schrödinger

is only through the interconnected boundary transmission

between the Schrödinger and wave equations:

y(1, t) = kzt(1, t), zx(1, t) = −ikyx(1, t), t ≥ 0. (2)

When we take the control U(t) by the distributed velocity

and displacements as

U(t) = −2bzt(x, t) − b2z(x, t), 1 < x < 2, t > 0, (3)
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where b > 0 is a positive feedback gain, the closed-loop

system is given as































yt(x, t) + iyxx(x, t) = 0, 0 < x < 1,
ztt(x, t) = zxx(x, t)

−2bzt(x, t)− b2z(x, t), 1 < x < 2,
y(0, t) = z(2, t) = 0, t ≥ 0,
y(1, t) = kzt(1, t), t ≥ 0,
zx(1, t) = −ikyx(1, t), t ≥ 0.

(4)

The energy function of (4) is

E(t) =
1

2

∫ 1

0

|y(x, t)|2dx+
1

2

∫ 2

1

[

|zx(x, t)|2

+b2|z(x, t)|2 + |zt(x, t)|2
]

dx.

(5)

The derivative of E(t) with respect to the time t yields

dE(t)

dt
= −2b

∫ 2

1

|zt(x, t)|2 dx ≤ 0.

Hence, the energy E(t) is non-increasing. An early attempt

to consider the stability of the interconnected Schrödinger

and wave equations is our recent paper [6]:























yt(x, t) + iyxx(x, t) = 0, 0 < x < 1,
ztt(x, t) = zxx(x, t)− bzt(x, t), 1 < x < 2,
y(0, t) = z(2, t) = 0, t ≥ 0,
y(1, t) = kzt(1, t), t ≥ 0,
zx(1, t) = −ikyx(1, t), t ≥ 0,

(6)

where b > 0. The eigenvalues of system (6) in [6] is showed

to be located in the left hand side of the complex plane,

and hence the C0-semigroup generated by the system oper-

ator achieves strong stability, but the result for exponential

stability is still open in [6].

Compared to [6], for simplicity in this paper, we design

the control U(t) as (3) including both the distributed velocity

−2bzt(x, t) and displacement −b2z(x, t), which can easily

get the decay rate −b of the wave subsystem if there is

no interconnection with the Schrödinger. We show that the

whole system (4) is exponentially stable in energy Hilbert

space, which says that the Schrödinger without any control

can be exponentially stable only through the boundary inter-

connected with the exponentially stabilized wave equation.

Moreover, the simulations for the eigenvalues will demon-

strate that the decay of the Schrödinger is depended largely

on the interconnected parameter k and the decay rate −b of

the wave equation.
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Fig. 1. Block diagram for a hyperbolic system of the interconnected Schrödinger-wave system

An interconnected Schrödinger and heat equations has

been treated in [13]:























wt(x, t) + iwxx(x, t) = 0, 0 < x < 1, t > 0,
ut(x, t) − uxx(x, t) = 0, 0 < x < 1, t > 0,
w(1, t) = ux(1, t), t ≥ 0,
w(0, t) = ku(0, t), t ≥ 0,
ux(1, t) = ikwx(1, t), t ≥ 0,

(7)

where k 6= 0 is a constant. It is showed that the system

(7) has two branches of eigenvalues along two parabolas,

which are asymptotically symmetric relative to the line

Reλ = −Imλ in λ-plane. When |k| 6= 1, the system (7)

is showed to have the Riesz basis property and exponential

stability. Remarkably, the semigroup, generated by the sys-

tem operator, is of Gevrey class δ > 2, which says that the

regularity of the Schrödinger has been greatly improved by

the heat equation only through the boundary interconnections

between the Schrödinger and heat equations. The stability

and regularity of the interconnected heat-Schrödinger system

in a two-dimensional torus region are obtained in [4].

In some instances the solution of the Euler-Bernoulli beam

can be obtained from the Schrödinger equation [8], but

significant differences arise due to boundary conditions [11].

The interconnected heat and Euler-Bernoulli equations has

been considered in [12] and [17] with different boundary

connections respectively, where the exponential stability and

Gevrey regularity are established due to the analytic regular-

ity of the heat equation.

The rest of this paper is organized as follows. In the

next section, we present the well-posedness of the system.

Section III is devoted to the spectral analysis and to get

the asymptotic eigenvalues of the system. The Riesz basis

property and exponential stability are established in Section

IV. Some numerical computations of the eigenvalues are

presented in Section V. Some conclusion is given in last

Section VI.

II. WELL-POSEDNESS OF THE SYSTEM

In this section, we show the well-posedness of system

(4). For simplicity in arguments, we introduce the following

transformation:

{

w(x, t) = y(1− x, t), 0 < x < 1, t > 0,
u(x, t) = z(x+ 1, t), 0 < x < 1, t > 0,

(8)

then system (4) becomes






























wt(x, t) + iwxx(x, t) = 0, 0 < x < 1,
utt(x, t) = uxx(x, t)

−2but(x, t) − b2u(x, t), 0 < x < 1,
w(1, t) = u(1, t) = 0, t ≥ 0,
w(0, t) = kut(0, t), t ≥ 0,
ux(0, t) = ikwx(0, t), t ≥ 0.

(9)

We consider system (9) in the energy Hilbert space

H = L2(0, 1)×H1
E(0, 1)× L2(0, 1),

where H1
E(0, 1) =

{

g ∈ H1(0, 1)|g(1) = 0
}

. The norm in

H is induced by the inner product:

〈X1, X2〉 =
∫ 1

0

[

f1(x)f2(x) + g′1(x)g
′
2(x)

+b2g1(x)g2(x) + h1(x)h2(x)
]

dx,

(10)

where Xs = (fs, gs, hs) ∈ H, s = 1, 2. Now we can define

two linear operators A and B, respectively, by






























A(f, g, h) = (−if ′′, h, g′′), ∀(f, g, h) ∈ D(A),

D(A) =



















(f, g, h) ∈
(

H2 ×H2 ×H1
E

)

∩H
∣

∣

∣

f(1) = 0, f(0) = kh(0),

g′(0) = ikf ′(0),
(11)

and

B(f, g, h) = (0, 0,−2bh− b2g), ∀(f, g, h) ∈ D(B) = H,

(12)

where it is found that B is bounded in H. Then system (9)

can be written as an evolution equation in H:

dX(t)

dt
= (A+ B)X(t), X(0) = X0 (13)

where X(t) = (w(·, t), u(·, t), ut(·, t)) and X0 denotes the

initial datum.

Lemma 2.1: In H, A is a skew-adjoint operator with

compact resolvents and B is a bounded operator. Hence,

A + B generates a C0-group e(A+B)t and the spectrum

σ(A+ B) consists of isolated eigenvalues only.

Proof: It is easy to verify that A is a skew-adjoint

operator with compact resolvents in H, and hence A has

only isolated eigenvalues located on the imaginary axis, and

generates a unitary group in H. Since B is bounded in H,

the standard perturbation result ([9]) implies that A+B has
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compact resolvents and generates a C0-group e(A+B)t on

H. Moreover, the spectrum σ(A + B) consists of isolated

eigenvalues only. The proof is complete.

Lemma 2.2: A+B is dissipative in H and hence e(A+B)t,

generated by A+ B, is a contractions C0-group in H.

Proof: Let X = (f, g, h) ∈ D(A + B). A direct

computation gives

Re〈(A + B)X,X〉 = Re〈BX,X〉
= Re

〈

(0, 0,−2bh− b2g), (f, g, h)
〉

= −2b

∫ 1

0

|h|2dx ≤ 0. (14)

Hence A+ B is dissipative. The proof is complete.

III. SPECTRAL ANALYSIS

In this section, we consider the eigenvalue problem of

system (9). Let (A+B)X = λX and λ ∈ σ(A+B), where

0 6= X = (f, g, h) ∈ D(A + B). Then we have that h(x) =
λg(x) and that f(x) and g(x) satisfy the eigenvalue problem














f ′′(x)− iλf(x) = 0,
g′′(x) = (λ2 + 2bλ+ b2)g(x) = (λ+ b)2g(x),
f(1) = g(1) = 0,
f(0) = λkg(0), g′(0) = ikf ′(0).

(15)

We can get
{

f(x) = c1 sinh(
√
iλ)(1 − x),

g(x) = c2 sinh(λ+ b)(1− x),
(16)

where c1 and c2 are constants. By the boundary conditions

f(0) = λkg(0) and g′(0) = ikf ′(0), we have
{

c1 sinh(
√
iλ) = c2kλ sinh(λ+ b),

c2(λ + b) cosh(λ+ b) = c1ik
√
iλ cosh(

√
iλ).

(17)

We claim in (17) that c1 6= 0. Actually, if c1 = 0, then g

satisfies
{

g′′(x) = (λ2 + 2bλ+ b2)g(x) = (λ+ b)2g(x),
g(1) = g(0) = g′(0) = 0,

which yields g ≡ 0. Contradiction! Hence, c1 6= 0. Similarly,

we have c2 6= 0. It follows from (17) that

c1c2

[

(λ + b) cosh(λ+ b) sinh(
√
iλ)

−ik2λ
√
iλ sinh(λ+ b) cosh(

√
iλ)

]

= 0.

By c1c2 6= 0, we get equation (15) has the nontrivial solution

if and only if

(λ + b) cosh(λ+ b) sinh(
√
iλ)

−ik2λ
√
iλ sinh(λ+ b) cosh(

√
iλ) = 0.

have zeros. Hence, we get the following lemma immediately.

Lemma 3.1: Let A and B be defined by (11) and (12)

respectively, and let

∆(λ) = (λ + b) cosh(λ+ b) sinh(
√
iλ)

−ik2λ
√
iλ sinh(λ+ b) cosh(

√
iλ).

(18)

Then

σ(A+ B) = σp(A+ B) = {λ ∈ C|∆(λ) = 0}. (19)

Lemma 3.2: Let A and B be defined by (11) and (12)

respectively. For each λ ∈ σp(A+ B), we have Reλ < 0.

Proof: By Lemma 2.2, since A+ B is dissipative, for

each λ ∈ σ(A + B), we have Reλ ≤ 0. So we only need

to show there is no eigenvalue on the imaginary axis. Let

λ = ±iµ2 ∈ σp(A + B) with µ ∈ R+ and X = (f, g, h) ∈
D(A + B) be its associated eigenfunction of A + B. Then

by (14), we have

Re〈(A+ B)X,X〉 = −2b

∫ 1

0

|h|2dx = 0.

Hence h(x) = 0. By the second equations of (15), we have

g(x) = 0. Then by the first equation of (15) and its boundary

conditions we have:

f ′′(x) = iλf(x), f(0) = f ′(0) = f(1) = 0,

which yields f(x) = 0. Hence, X = (f, g, h) = 0.

Therefore, there is no eigenvalue on the imaginary axis.

Theorem 3.3: Let A and B be defined by (11) and (12)

respectively, and let ∆(λ) given by (18). The eigenvalues of

A+B have the following asymptotic expressions: for n ∈ N

and as n → ∞,

λ±
1n = −b± nπi +O(n−1/2), (20)

and

λ2n = −β1n + β2ni+

(

n− 1

2

)2

π2i+O(n−1), (21)

where β1n > 0 and β2n are two real constants, and β1n

satisfies the relationship

2−1k2β1n =
γ2
1n − 1 + γ2

2n

(γ1n − 1)2 + γ2
2n

=
e4b−4β1n − 1

(γ1n − 1)2 + γ2
2n

, (22)

with


























γ1n = e2b−2β1n cos

[

2β2n + 2

(

n− 1

2

)2

π2

]

,

γ2n = e2b−2β1n sin

[

2β2n + 2

(

n− 1

2

)2

π2

]

.

(23)

Moreover, as n → ∞, we have

β1n 6→ 0. (24)

Therefore, as n → ∞,

Reλ±
1n → −b < 0, Reλ±

2n = −β1n(< 0) 6→ 0, (25)

which says that the imaginary axis is not an asymptote of

the eigenvalues of A+ B.

Proof: By ∆(λ) = 0, we have

ik2λ
√
iλ(e(λ+b) − e−(λ+b))(e

√
iλ + e−

√
iλ)

−(λ+ b)(e(λ+b) + e−(λ+b))(e
√
iλ − e−

√
iλ) = 0.

(26)
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Let λ = ρ2 6= 0. Since Reλ < 0, we have

arg ρ ∈
(

π

4
,
3π

4

)

,

and hence (26) can be rewritten as

0 = k2(e(λ+b) − e−(λ+b))(e
√
iρ + e−

√
iρ)

+
√
i
(

ρ−1 + bρ−3
)

(e(λ+b) + e−(λ+b))(e
√
iρ − e−

√
iρ).

(27)

There are two cases:

i) When

arg ρ ∈ S1 =

(

11π

16
,
3π

4

]

,

we have

arg
(√

iρ
)

∈
(

15π

16
, π

]

,

and

arg(λ) = arg(ρ2) ∈
(

11π

8
,
3π

2

]

,

with the estimates
∣

∣

∣
e
√
iρ
∣

∣

∣
→ 0,

∣

∣

∣
e−

√
iρ
∣

∣

∣
→ +∞.

So, equation (27) becomes

e2(λ+b) − 1 +O(ρ−1) = 0. (28)

Since e2(λ+b) − 1 = 0 has the solutions

λ̃−
1n = −b− nπi, n ∈ N.

Applying the Rouché’s theorem, we get the solutions of

equation (28): as n → ∞,

λ−
1n = −b− nπi+O(n−1/2), n ∈ N. (29)

ii) When

arg ρ ∈ S2 =

[

π

4
,
5π

16

)

,

we have

arg
(√

iρ
)

∈
[

π

2
,
9π

16

)

and

argλ = arg(ρ2) ∈
[

π

2
,
5π

8

)

.

Moreover, equation (26) can be rewritten as

0 = k2(e(λ+b) − e−(λ+b))(e
√
iρ + e−

√
iρ)

+
√
iρ−1(e(λ+b) + e−(λ+b))(e

√
iρ − e−

√
iρ) +O(ρ−3).

(30)

It is noting that the equation

(e(λ+b) − e−(λ+b))(e
√
iρ + e−

√
iρ) = 0

goes to

e(λ+b) − e−(λ+b) = 0 or e
√
iρ + e−

√
iρ = 0. (31)

The equation (31) yields two branch solutions:














λ̃+
1n = −b+ nπi, n ∈ N,

ρ̃2n =
(

n− 1
2

)√
iπ, n ∈ N,

λ̃2n = ρ̃22n =
(

n− 1
2

)2
π2i, n ∈ N.

(32)

By applying the Rouché’s theorem again, we get the solu-

tions of equation (30): for n ∈ N and n → ∞,

λ+
1n = −b+ nπi +O(n−1/2), (33)

and

ρ2n = ρ̃2n + αn =

(

n− 1

2

)√
iπ + αn, αn = O(n−1).

(34)

For the second branch ρ2n, we need to get the more accurate

estimate for αn. Since

λ2n = ρ22n =

(

n− 1

2

)2

π2i+2αn

(

n− 1

2

)√
iπ+O(n−2)

(35)

and

eλ2n = βne
αn(2n−1)

√
iπ +O(n−2), βn = e(n−1/2)2π2i.

(36)

Substituting these into equation (30), we have

0 = O(ρ−3
2n ) + k2

[

e
√
i(ρ̃2n+αn) + e−

√
i(ρ̃2n+αn)

]

+
√
iρ−1

2n

e2(λ2n+b) + 1

e2(λ2n+b) − 1

(

e
√
i(ρ̃2n+αn) − e−

√
i(ρ̃2n+αn)

)

.

By using the equality e
√
iρ̃2n = −e−

√
iρ̃2n , the above

equation can be rewritten as

0 = O(ρ−3
2n ) + k2

[

e
√
iαn − e−

√
iαn

]

+
√
iρ̃−1

2n

e2(λ2n+b) + 1

e2(λ2n+b) − 1

(

e
√
iαn + e−

√
iαn

)

.

By Taylor series expression, we have

2
√
ik2αn + 2

√
iρ̃−1

2n

e2(λ2n+b) + 1

e2(λ2n+b) − 1
+O(ρ̃−2

2n ) = 0,

which yields

αn = −k−2ρ̃−1
2n

e2(λ2n+b) + 1

e2(λ2n+b) − 1
+O(ρ̃−2

2n ).

Hence,

ρ2n = ρ̃2n − k−2ρ̃−1
2n

e2(λ2n+b) + 1

e2(λ2n+b) − 1
+O(ρ̃−2

2n )

and

λ2n = ρ22n = ρ̃22n − 2k−2 e
2(λ2n+b) + 1

e2(λ2n+b) − 1
+O(ρ̃−1

2n )

=

(

n− 1

2

)2

π2i− 2k−2 e
2(λ2n+b) + 1

e2(λ2n+b) − 1
+O(n−1).

(37)

From above expression of λ2n, λ2n has the expression (21).

By Lemma 3.2, we have

β1n > 0.

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

192



It is further found that

e2(λ2n+b) = e2b−2β1ne
2
[

β2n+(n− 1

2
)2π2

]

i
+O(n−1)

= e2b−2β1n cos

[

2β2n + 2

(

n− 1

2

)2

π2

]

+ie2b−2β1n sin

[

2β2n + 2

(

n− 1

2

)2

π2

]

+O(n−1)

= γ1n + iγ2n +O(n−1),

where γ1n and γ2n are given as (23). So, we have

e2(λ2n+b) + 1

e2(λ2n+b) − 1
=

1 + γ1n + iγ2n

γ1n − 1 + iγ2n
+O(n−1)

=
γ2
1n − 1 + γ2

2n

(γ1n − 1)2 + γ2
2n

− i
2γ2n

(γ1n − 1)2 + γ2
2n

+O(n−1),

and γ1n and γ2n satisfy the relationships:
{

γ2
1n + γ2

2n = e4b−4β1n ,

(γ1n − 1)2 + γ2
2n = γ2

1n + γ2
2n + 1− 2γ1n.

Comparing to expressions (37) and (21), β1n satisfies the

relationship (22). Finally, we claim that

β1n 6→ 0, as n → ∞.

Actually, if β1n → 0, then the right side of (22) does not go

to 0. This is contradiction! The proof is complete.

IV. EXPONENTIAL STABILITY

In this section, we establish the Riesz basis property and

stability of system (9). Due to fact that B is bounded in

H. It is natural to use the bounded perturbation conclusion

to consider the completeness of system (9). So, we cite the

Keldysh theorem [2, pp.170, Theorem 4] here.

Lemma 4.1: Let K be a compact self-adjoint operator

in a Hilbert space H with kerK = {0} and eigenvalues

λj(K), j = 1, 2, ..... Assume that

∞
∑

j=1

|λj(K)|r < ∞

for some r ≥ 1, and let S be a compact operator such

that I + S is invertible. Then the system of generalized

eigenfunctions of the operator

A := K(I + S)

is complete in H.

Now we can get the completeness of system (9).

Theorem 4.2: Let A and B be defined by (11) and (12)

respectively. Then system (9) is complete in the sense that the

generalized eigenfunctions of A+B are complete in Hilbert

space H.

Proof: Since A is a skew-adjoint operator with compact

resolvents and 0,∞ ∈ ρ(A), (iA)−1 is a compact self-

adjoint operator with ker(iA)−1 = {0}. We have
{

λk

(

(iA)−1
)

}∞

k=1
∈ ℓ2.

Since

(i(A+ B))−1
= (iA)−1(I + BA−1)−1

= (iA)−1(I − BA−1(I + BA−1)−1),

BA−1 and BA−1(I + BA−1)−1 are compact and

I − BA−1(I + BA−1)−1

is invertible, so the proof follows from Lemma 4.1.

We cite another conclusion to get the Riesz basis property

(see [14], [15] or [16]).

Lemma 4.3: Let H be a separable Hilbert space, and let

A be the generator of a C0-semigroup T (t) on H. Suppose

that the following conditions hold:

(1) σ(A) = σ1(A) ∪ σ2(A) and σ2(A) = {λk}∞k=1

consists of only isolated eigenvalues of finite algebraic

multiplicity;

(2) For ma(λk) := dimE(λk,A)H, where E(λk,A)
denotes the Riesz-projection associated with λk, it has

sup
k≥1

ma(λk) < ∞;

(3) There is a constant α such that

sup {Reλ|λ ∈ σ1(A)} ≤ α ≤ inf{Reλ|λ ∈ σ2(A)}

and

inf
n6=m

|λn − λm| > 0.

Then the following assertions hold:

(i) There exist two T (t)-invariant closed subspaces H1

and H2 such that σ(A|H1
) = σ1(A), σ(A|H2

) = σ2(A),
and {E(λk,A)H2}∞k=1 forms a Riesz basis of subspaces for

H2, i.e., ∀x2 ∈ H2,

x2 =

∞
∑

k=1

E(λk,A)x2.

(ii) There exist two positive constants C1, C2 independent

of k and x2 such that

C1

∞
∑

k=1

‖E(λk,A)x2‖2 ≤
∥

∥

∥

∥

∥

∞
∑

k=1

E(λk,A)x2

∥

∥

∥

∥

∥

2

≤ C2

∞
∑

k=1

||E(λk,A)x2||2.

Furthermore,

H = H1 ⊕H2.

(iii) If supk≥1 ||E(λk,A)|| < ∞, then

D(A) ⊂ H1 ⊕H2 ⊂ H.

(iv) H can decompose into the topological direct sum

H = H1 ⊕H2

if and only if

sup
n≥1

||
n
∑

k=1

E(λk,A)|| < ∞.
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Fig. 2. Spectrum for b = 5, k = 0.5
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Fig. 3. Spectrum for b = 5, k = 0.6

Now we can get the Riesz basis property of system (9).

Theorem 4.4: System (9) is a Riesz spectral system (in the

sense that its generalized eigenfunctions form a Riesz basis in

H). Thus, the spectrum determined growth condition holds,

that is, s(A+B) = ω(A+B), with s(A+B) = sup{Reλ|λ ∈
σ(A+B)} being the spectral bound of A+B and ω(A+B)
being the growth bound of the semigroup e(A+B)t.

Proof: We take σ2(A+B) = σ(A+B), σ1(A+B) =
{∞}, then it is easy to see that conditions (2) and (3) in

Lemma 4.3 are true. Finally, Theorem 4.2 implies that H1 =
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Fig. 4. Spectrum for b = 5, k = 0.7
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Fig. 5. Spectrum for b = 5, k = 0.8

{0}. Therefore, the first assertion of Lemma 4.3 says that

there is a sequence of generalized eigenvectors of A + B
that forms a Riesz basis in H. Accordingly, the spectrum

determined growth condition can be obtained by a direct

consequence of the Riesz basis property of A+ B.

As a consequence of Theorem 4.4, we have the exponential

stability for system (9).

Theorem 4.5: Let b > 0 and k 6= 0. Then system (9) is

exponentially stable.

Proof: Theorem 4.4 ensures the spectrum-determined
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Fig. 6. Spectrum for b = 5, k = 0.9

growth condition s(A + B) = ω(A + B), Lemma 3.2 says

that Reλ < 0 provided λ ∈ σ(A + B) and Theorem 3.3

shows that imaginary axis is not an asymptote of σ(A+B).
Therefore s(A + B) = sup{Reλ : λ ∈ σ(A + B)} < 0 and

system (9) is exponentially stable.
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Fig. 7. Spectrum for b = 5, k = 1.0

V. SIMULATIONS

The Legendre spectral method [1] is adopted for system

(9) to present a numerical calculations of the spectrum of
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Fig. 8. Spectrum for b = 5, k = 1.5
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Fig. 9. Spectrum for b = 5, k = 2.0

the feedback gains b = 5 and the interconnected parameter

k = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5 and 2.0 respectively.

From Fig. 2 - 9, it is found that all eigenvalues of system

(9) are located on the left half side of the complex plane.

As k from 0.5 to 2.0, a branch of spectrum goes to the

imaginary axis which separates all eigenvalues into two parts:

the left side is for the wave and the other right side is for

the Schrödinger. From the figures, it is indicated that as |k|
large, the decay of the Schrödinger changes weak.

It is also nothing that if there are no interconnections
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between the wave and the Schrödinger, the decay rate of

the wave will be −5 if we take b = 5. From the figures 2 -

9, it is found that the real part of the left lower part of the

eigenvalues is very closer to −5, which says that this part of

the wave is just a little effect on the Schrödinger.

VI. CONCLUSIONS

In this paper, the stability of a hyperbolic system of the

interconnected Schrödinger and wave equations is treated. It

is showed that only with the distributed dissipative velocity

and displacement are forced at the wave equation, the whole

system of the interconnected Schrödinger and wave equations

will be exponentially stable. The numerical computation of

the spectrum illustrates the correction of the stability result.

Moreover, from the simulation of the spectrum, it is found

that the spectrum of the Schrödinger depends largely on the

interconnected transmission parameter and the decay of the

wave equation.
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