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Abstract— Iterative learning control is a well established
area of research and applications in engineering and more
recently healthcare. This form of control is especially suitable
for applications where the system is required to make repeated
executions of a finite duration task with resetting to the
starting location at the end of each execution. The majority
of the theory and designs are for systems described by finite
dimensional differential or discrete dynamics but there is
increasing interest in the extension to systems described by
partial differential equations, where the interest in this paper
is in the use of approximate finite dimensional models of the
dynamics. The construction of such models studied using a
regular hexagonal grid and polar coordinates, with a fourth
order partial differential equation as an example. A supporting
numerical application study is also given.

I. INTRODUCTION

Systems with spatial and temporal dynamics described by
partial differential equations (PDEs) arise in many applica-
tions. Moreover, the design and physical implementation of
control laws for such systems will require discretisation of
the defining PDEs. Form the numerical literatures, one group
of methods that can be applied is a finite difference ap-
proximation [1]. A critical factor with this general approach
is numerical stability (convergence), i.e., the trajectories
produced by the discrete approximation must be close, as
measured by some appropriate measure, to those produced
by the original PDE. One method of checking for checking
numerical stability is due to von Neumann, see,e.g., [2].

Discretization of PDEs with one temporal and one spatial
variables, e.g., the heat transfer equation, results in models
that are structurally very similar to repetitive processes [3].
The these process make a series of sweeps, termed passes,
through a set of dynamics defined over a fixed finite duration
termed the pass length. The sequence of operation is that a
pass is completed and then the process is reset to the starting
location and the next one can begin, either immediately after
the resetting is complete or after a further period of time has
elapsed. On each pass, an output, termed the pass profile, is
produced which acts as a forcing function on and therefore
contributes to the dynamics of the next pass profile.
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These processes are therefore a particular case of a 2D
system where there are two independent directions of the
information propagation. In the repetitive process represen-
tation of the discretization of PDEs, the pass number is
associated with the discrete time sample instants and the
along pass dynamics are governed by the discrete spatial
variable, see, e.g., [4]. The use of this setting to design
iterative learning control laws for spatio-temporal dynamics
has been reported, see, e.g., [4].

Explicit methods are one class of finite difference dis-
cretization schemes [5], [6] and one of these was used in [4].
These methods produce a causal in time discrete recursive
model where, in the repetitive process interpretation, at any
instant on the current pass a window of sample instants on the
previous pass contribute to the dynamics. However, explicit
discretization methods are conditionally numerically stable,
i.e., the time discretization period is related to its spatial
counterpart. This, in effect, leads to the need to use dense
time and spatial discretization grids.

One way of overcoming this drawback is to use the so-
called singular methods, see [5], [6], [7] and, particular, the
Crank-Nicolson method [8] that can produce an uncondi-
tionally stable discrete approximation to the dynamics of
the original PDE. Hence, the time and spatial grids are
not related and can therefore be less dense. However, the
resulting discrete models are in implicit form, i.e., there is
no straightforward dependence of the pass profile at any
instance on the current pass and the window of previous
pass values. Instead, this dependence is between windows
of sample instant data generate on the current and previous
passes, see [9].

Formulating and solving control problems for singular
systems requires the use of the lifting approach, i.e., ab-
sorbing the spatial structure of the system into possibly
high dimensional vectors, again see [9], [10] for a detailed
treatment. In [10] the Crank-Nicolson method was extended
to systems described by a PDE defined over time and two
spatial variables. As a particular example, a thin circular
flexible plate was considered, which, e.g., can be used to
model the vibrations of a deformable mirror subject to a
transverse external force. In this paper a regular hexago-
nal grid with polar coordinates is used for discretization
where Cartesian coordinates were used. It is shown that
the resulting discrete approximation has the unconditional
numerical stability property and hence, relative to the discrete
approximations discussed above, a significantly less dense
discretization grid can be used with no degradation of the
approximate model dynamics. This, in turn, means a much
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smaller number of sensors and actuators distributed over a
controlled plate can (potentially) be used to advantage in
control law design and implementation.

II. DESCRIPTION OF A CIRCULAR DEFORMABLE
MIRROR IN POLAR COORDINATES

A circular deformable mirror can be described by partial
differential equation [11, p. 283, eq. (191)]
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where w = w(t, r, ϕ) denotes the lateral deflection (m) of the
mirror at time t (s) in polar coordinates r (radius) (m) and ϕ
(angle) (rad). Also ρ denotes the mass per unit area (kg m−2)
and h is the thickness of the plate (m), D = E h3

12(1−ν2) ,

where ν is the Poisson ratio, E is Young’s modulus [N m−2]
and f is the transverse external force with dimension of
force per unit area (N m−2). In the case when the load is
symmetrically distributed with respect to the center of the
mirror, the deflection is independent of ϕ and (1) becomes,
see again [11],
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In this paper, the load is taken as symmetrically distributed
with respect to the center of the mirror and described
by (2). Further, the mirror diameter is equal to a and it is
assumed that the edges of the mirror are clamped. Hence,
the deflection and its first derivation with respect to r are
zero at all points, where r = a/2, i.e.,

w(t, a/2) = 0,
∂

∂r
w(t, a/2) = 0 (3)

for all t ≥ 0.
The mirror is assumed to be equipped with an array of

sensors and actuators that are arranged in a hexagonal grid
and is shown in Fig. 1. In this figures the locations with
sensors and actuators are shown in black. The meaning to
the other points, denoted by red and blue colors, will be
detailed later in the paper. The number of nodes placed on
the diameter is denoted by n (n = 5 in the example shown
in Fig. 1. As one possible application, consider a tracking
example where the mirror is required to have a particular
shape after a period time. Then as discussed in [9], iterative
learning control can be applied. This area requires further
research on both the construction of the approximate model
used for control design and the control law to be applied and
is discussed again in the last section of this paper.

III. DISCRETISATION

The control of the deformable mirror in this paper is
based on signals applied by the array of actuators with the
resulting deflections measured by the array of sensors the
PDE (2) will be discretized in the spatial variable to obtain
a model on which to base controller design. The control
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Fig. 1. An example of the hexagonal grid for n = 5

implementation is in discrete-time and therefore discretiation
is also implemented for the temporal variable.

Discretisation is based on finite difference methods, where
basic principle is to cover the region where a solution
is sought by a regular grid and to replace derivatives by
differences using only values at these nodal points. In the
case considered, these nodal points are specified by the
location of sensors and actuators and are given in Fig. 1.
Let p and l denote, respectively, tp and rl and δt and δr
denote, respectively, the sampling period and the distance
between nodes and

δr =
a

n+ 1
. (4)

Also r, 0 ≤ r ≤ a/2, denotes distance from the middle of
the plate. In what follows the case when r > 0 and r = 0
are considered.

A. Case r > 0

In this case, the second derivative with respect to time is
approximated by
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and the other derivatives are approximated by
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B. Case r = 0

Consider the following terms in (2)
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Hence, at r = 0 the PDE (2) is approximated by
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Substituting (5) and (9) into (14) gives, after routine manip-
ulations,
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IV. NUMERICAL STABILITY ANALYSIS

A. Case r > 0

Consider (10) with zero right-hand side and substitute
gp ej l θ for wp,l, where j =

√
−1, g is termed amplification

factor and θ is the spatial frequency. By von Neumann
analysis [1], (10) is stable if and only if |g| ≤ 1 for all
values of θ. With the above substitution, (10) can be written
as a polynomial in g of the form

A2(θ) g2 +A1(θ) g +A0(θ), (16)

where non-constant coefficients A0, A1, A2 are uniquely
defined and follow immediately from (10). Then, |g| ≤ 1
if and only if

A2 +A1 +A0 ≥ 0, (17)
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for all values of θ.
Using Euler’s formula, (17) can be written as
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A complex number is non-negative if its real part is negative
and hence (20) becomes
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Similarly, the condition of (18) can be written as
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and the real part of (22) can be made non-negative for all
values of θ. Also (19) is always satisfied and since (17)–(19)
hold, (10) is a stable approximation when r > 0.

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

661



B. Case r = 0

In this case (17)–(19) are, respectively,
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It is straightforward to show that the these conditions are
always satisfied and hence (15) is a stable approximation
when r = 0.

It follows from above results that (15) is a stable ap-
proximation of (2) for all r ≥ 0 and all values of δt
and δr. However, this does not follow that solution to this
approximation for arbitrary values of parameters perfectly
fits the solution to the original PDE, see later in this paper.

C. Boundary conditions

Using only discrete points of the grid (see Fig. 1), the
boundary conditions (3) are

wp,l+ n+1
2

= 0, wp,l+ n+1
2 +1 − wp,l+ n+1

2
= 0 (26)

for all p ≥ 0. Equivalently, the deflection is zero at all points
marked by red and blue colours in Fig. 1 and they will not
be included in the simulations given later in the paper.

V. THE STATE-SPACE MODEL OF
A DEFORMABLE MIRROR

The aim of this paper is to develop a mathematical model
of a deformable mirror vibrations in state-space form to
facilitate control design, which requires the introduction of
additional notation.

On application of the discretization scheme r can have
only discrete values
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Applying lifting along the spatial variable, i.e. introducing
the supervectors
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enables (10) to be written in matrix form as

AWp+2 +BWp+1 +AWp = C Fp (30)

where A and B are given in (31) and (32), respectively, and
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D
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Assuming that A is invertible (30) can be rewritten as

Wp+2 = −A−1BWp+1 − Wp +A−1 C Fp. (34)

and introducing
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Fig. 2. Initial conditions
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leading to the state equation form

Wp+1 =

[
−A−1B −I

I O

]
Wp +

[
A−1C
O

]
Fp (36)

with p ≥ 0.

VI. SIMULATION VERIFICATION
Consider a circular plate of diameter a = 1 m with ρ =

25 kg m−2, ν = 0.22, E = 7 ·1010 N m−2 and h = 0.002 m.
Let n = 9. The responses to the initial condition given in
Fig. 2 is computed, where this condition is symmetrically
distributed with respect to the center of the mirror. Simulated
deflections at the middle node of the plate are shown for
δt = 1/1000 s and δt = 1/2000 s in Fig. 3. Deflections of
the plate at t = 0.96 s for δt = 1/1000 s and δt = 1/2000 s
are shown in Fig. 4. These responses are stable and consistent
with the physics of the problem. Moreover, the responses for
the both sampling time periods are very similar, confirming
the correctness of the discretisation.

By the sampling theorem see, e. g. [12], the sampling
period δt should be ft = 1/δt ≥ 2 fmax, where fmax

denotes the maximum frequency in the frequency response
of system. To apply this theorem requires that the frequency
response is bandlimited and the highest non-zero frequency
must be known. In practice, various sampling periods were
implemented and the choice of fmax = 500 Hz was made.
The frequency response for this sampling period is very
similar to that for the sampling period used, see Fig. 3.
However, the values δt = 1/50 s or δt = 1/100 s are too high
since corresponding responses are significantly different, see
Fig. 5. The response for δt = 1/2 shown in Fig. 6, which is
stable but this value is not acceptable since the oscillations in
this plot are not symmetric about the origin. In conclusion,
a unconditionally stable approximation of (2) for all δt can
be constructed but the choice of parameters used must be
verified by simulation. Clearly, there is further work to be
done but in control systems design terms, an approximate
model suitable for control design can be obtained.
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Fig. 3. Response to initial conditions at the middle node of the plate for
δt = 1/1000 s and δt = 1/2000 s
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Fig. 4. Deflection of the plate at t = 0.96 s for δt = 1/1000 s and
δt = 1/2000 s. Deflection is symmetrically distributed with respect to the
center of the mirror.
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Fig. 5. Response to initial conditions at the middle node of the plate for
δt = 1/50 s and δt = 1/100 s
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Fig. 6. Response to initial conditions at the middle node of the plate for
δt = 1/2 s

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

663



VII. CONCLUSIONS
This paper has developed a Crank-Nicolson based dis-

cretization scheme for systems described by a PDE in
Lagrange form. In this paper, the physical problem of
controlling the vibrations of a circular thin plate using an
approximate finite dimensional model has been considered
but the construction of this model can be applied to other
examples. In contrast to previous work, discretisation using
polar coordinates has been used. The unconditional stability
of the approximation has been established but the sampling
period implications needs further research/development.

Use of polar coordinates results in difference equations
that approximately model the dynamics in one spatial in-
determinate and time, unlike the rectangular (for a square
system) or hexagonal a (for circular system), results in
difference equations in two spatial indeterminates and time.
Hence immediate benefits in terms of the dimensions of the
matrices involved should this approximate model be written
as a difference system in time to enable the application of
standard (in time) systems theory

Future work will concentrate on the use of this model in
applications, such as those to which iterative learning control
can be applied. In particular , the model of (36), which is
in the form of a first order discrete state-space equation,
obtained by using the lifting along the spatial variable l is a
good basic point for this form of control law design. One of
the options is to use the repetitive processes approach that
is based on introducing the increments of the state variables
along the trial and an increment of the errors from trial-to-
trial, see e.g., [3].
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