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Abstract— The covering radius of a rank-metric code is
defined as the maximum distance between the code and a matrix
from the ambient space. This fundamental parameter measures
the performance of a code both in error correction and source
coding applications. In this paper we discuss some structural
properties of matrix codes endowed with the rank metric, and
relate them to the covering radius. In particular, we derive
upper bounds on the covering radius of a rank-metric code by
applying different combinatorial methods.

I. INTRODUCTION

In recent years, rank-metric codes have featured promi-
nently in the Coding Theory literature, especially after their
applications to error control in network communications
were understood. A rank-metric code is a subset of the matrix
space Fk×m

q endowed with the rank distance function.
There are only few known classes of rank-metric

codes [10], [11], [20], which are optimal and can be effi-
ciently decoded [11], [15], [23].

In this paper, we study the covering radius of a (matrix)
rank-metric code. This fundamental parameter measures the
maximum weight of any correctable error in the ambient
space. It also characterizes the maximality property of a code,
that is, whether or not the code is contained in a supercode of
the same minimum distance. The covering radius of a code
can also be viewed as the least integer r such that every
element of the ambient space is within distance r of some
codeword.

There are numerous papers and books on this topic for
classical codes with respect to the Hamming metric (see [1],
[4], [5], [6], [14] and the references therein), but relatively
little attention has been paid to it for (matrix) rank-metric
codes [12], [13].

In this paper we develop combinatorial tools to derive
upper bounds on the covering radius of (not necessarily
linear) rank-metric codes. Some of the derived bounds, such
as the dual distance and external distance bounds, can be
seen as analogues of bounds for the Hamming metric. Others,
such as the initial set bound, are unique to matrix codes.

The remainder of the paper is organized as follows:
Section II is devoted to preliminary concepts and results on
rank-metric codes. In Section III we consider the property
of maximality. We say that a code is maximal if it is not
contained in a proper supercode of the same minimum dis-
tance. We introduce a new parameter, called the maximality
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degree of a code, and show that it is determined by the
minimum distance and the covering radius of the code. In
Section IV we investigate translates of a code, showing
that the weight enumerator of a coset of a linear code is
completely determined by the weights of first n−d⊥ cosets.
We establish this result using Möbius inversion on the lattice
of subspaces of Fk

q , and apply it to derive a dual distance
bound on the covering radius of a linear rank-metric code. In
section V we give the rank-metric analogue of the external
distance bound, which holds also for non-linear codes. In
Section VI we then introduce the concept of the initial set
of a matrix code, and use this to derive a third bound on the
covering radius of a code.

II. RANK-METRIC CODES
In the sequel q is a fixed prime power, and Fq is the finite

field with q elements. We also fix positive integers k ≤ m
and denote by Fk×m

q the space of k ×m matrices over Fq .
For any integer n ≥ 1 we set [n] := {i ∈ N : 1 ≤ i ≤ n}.

Definition 1. The rank distance between matrices M,N ∈
Fk×m
q is d(M,N) := rk(M −N). A rank-metric code is a

non-empty subset C ⊆ Fk×m
q . If |C| ≥ 2, then the minimum

distance of C is the integer

d(C) := min{d(M,N) : M,N ∈ C, M 6= N}.

The weight and distance distribution of C ⊆ Fk×m
q are

the integer vectors W (C) = (Wi(C) : 0 ≤ i ≤ k) and
B(C) = (Bi(C) : 0 ≤ i ≤ k), where, for all i,

Wi(C) := |{M ∈ C : rk(M) = i}|,
Bi(C) := |C|−1 · |{(M,N) ∈ C2 : d(M,N) = i}|.

The dual code of a linear code C is

C⊥ := {N ∈ Fk×m
q : Tr(MN t) = 0 for all M ∈ C}.

If C ⊆ Fk×m
q is linear, then we have

d(C) = min{rk(M) : M ∈ C, M 6= 0}

and Wi(C) = Bi(C) for all i ∈ {0, ..., k}. Moreover, since
the map (M,N) 7→ Tr(MN t) defines an inner product on
the space Fk×m

q , we have dim(C⊥) = km − dim(C) and
C⊥⊥ = C.

In this paper we study the following fundamental param-
eter of a rank-metric code.

Definition 2. The covering radius of a code C ⊆ Fk×m
q is

the integer

ρ(C) := min{i ∈ N : for all X ∈ Fk×m
q

there exists M ∈ C with d(X,M) ≤ i}.
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The covering radius of a code C is therefore the maximum
distance of C to any matrix in the ambient space, or the
minimum value r such that the union of the spheres of radius
r about each codeword cover the ambient space.

The following result summarizes some simple properties
of this fundamental invariant.

Lemma 3. Let C ⊆ Fk×m
q be a code. The following hold.

1) ρ(C) = 0 if and only if C = Fk×m
q .

2) If D ⊆ Fk×m
q is a code with C ⊆ D, then ρ(C) ≥ ρ(D).

3) If D ⊆ Fk×m
q is a code with C ( D, then ρ(C) ≥ d(D).

4) d(C)− 1 < 2ρ(C), if |C| ≥ 2 and C ( Fk×m
q .

All the above properties are simple consequences of the
definitions.

III. MAXIMALITY
In this section we investigate the connection between the

covering radius of a rank-metric code and the property of
maximality. A code C ⊆ Fk×m

q is maximal if |C| = 1 or
|C| ≥ 2 and there is no code D ⊆ Fk×m

q with D ! C and
d(D) = d(C). In particular, Fk×m

q is maximal.

Proposition 4 (see e.g. [5]). A code C ⊆ Fk×m
q with |C| ≥ 2

is maximal if and only if ρ(C) ≤ d(C)− 1.

We propose a natural parameter that measures the max-
imality of a code, and show how it relates to its covering
radius.

Definition 5. The maximality degree of a code C ⊆ Fk×m
q

with |C| ≥ 2 is the integer

µ(C) := min{d(C)− d(D) : D ⊆ Fk×m
q

is a code with D ! C}.

We also put µ(Fk×m
q ) := 1.

The maximality degree of a code C ⊆ Fk×m
q with |C| ≥ 2

satisfies 0 ≤ µ(C) ≤ d(C)−1. Moreover, it is easy to see that
µ(C) > 0 if and only if C is maximal. Notice that µ(C) can
be interpreted as the minimum price (in terms of minimum
distance) that one has to pay in order to enlarge C to a bigger
code. We can state a precise relation between the covering
radius and the maximality degree of a code as follows.

Proposition 6 ([2], Proposition 7). For any code C ⊆ Fk×m
q

with |C| ≥ 2 we have µ(C) = d(C) −min{ρ(C), d(C)}. In
particular, if C is maximal then µ(C) = d(C)− ρ(C).

IV. TRANSLATES OF A RANK-METRIC CODE
AND DUAL DISTANCE BOUND

In this section we study the weight distribution of the
translates of a code. As an application, we obtain an upper
bound on its covering radius.

Recall that the translate of a code C ⊆ Fk×m
q by a matrix

X ∈ Fk×m
q is the code

C +X := {M +X : M ∈ C} ⊆ Fk×m
q .

Clearly, full knowledge of the weight distribution of the
translates of C tells us the covering radius, which is the

maximum of the minimum weight of each translate of C.
Even partial information may yield a bound on the covering
radius. More precisely, if X ∈ Fk×m

q and Wi(C + X) 6= 0,
then d(X, C) := min{d(X,M) : M ∈ C} ≤ i. So if there
exists r such that for each X ∈ Fk×m

q , Wi(C +X) 6= 0 for
some i ≤ r then, in particular, ρ(C) ≤ r. If such a value
r can be determined, then we get an upper bound on the
covering radius of C.

The goal of this section is twofold. We first show that
the weight distribution W0(C + X), ...,Wk(C + X) of the
translate C + X of a linear code C ( Fk×m

q is determined
by the values of W0(C + X), ...,Wk−d⊥(C + X), where
d⊥ = d(C⊥). Moreover, we provide explicit formulas for
Wk−d⊥+1(C + X), ...,Wk(C + X) as linear functions of
W0(C +X), ...,Wk−d⊥(C +X).

In a second part, we obtain an upper bound on the covering
radius of a linear code in terms of the distance of its dual
code.

Theorem 7 ([2], Theorem 20). Let C ( Fk×m
q be linear, and

let X ∈ Fk×m
q be any matrix. Write d⊥ := d(C⊥). Then for

all integers k − d⊥ + 1 ≤ i ≤ k we have

Wi(C +X) =

k−d⊥∑
u=0

(−1)
i−u

q(
i−u
2 )
[
k − u
i− u

]
q

·

u∑
j=0

Wj(C +X)

[
k − j
u− j

]
q

+

i∑
u=k−d⊥+1

[
k
u

]
q

|C|
qm(k−u) .

In particular, the distance distribution of the translate code
C+X is completely determined by k, m, |C| and the weights
W0(C +X), ...,Wk−d⊥(C +X).

As a simple consequence of Theorem 7 we obtain an upper
bound on the covering radius of a linear code C ( Fk×m

q in
terms of its dual distance. Let X ∈ Fk×m

q /∈ C be an arbitrary
matrix. Then we have W0(C+X) = 0. Now Theorem 7 with
i := k − d⊥ + 1 gives

Wk+d⊥+1(C +X) =

k−d⊥∑
u=1

(−1)
i−u

q(
i−u
2 )
[
k − u
i− u

]
q

·

u∑
j=1

Wj(C+X)

[
k − j
u− j

]
q

+

[
k

k − d⊥ + 1

]
q

|C|/qm(d⊥−1).

In particular, W1(C + X), ...,Wk−d⊥+1(C + X) cannot be
all zero.

Corollary 8 (dual distance bound, Corollary 21 of [2]). For
a linear code C ( Fk×m

q we have ρ(C) ≤ k − d(C⊥) + 1.

V. EXTERNAL DISTANCE BOUND

Following work of Delsarte for the Hamming metric [8],
in this section we apply Fourier transform methods to obtain
further results on the weight distributions of the translates of
a (not necessarily linear) code C ⊆ Fk×m

q . In particular, we
obtain an upper bound for the covering radius of a general
rank-metric code in terms of its external distance.
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Throughout the reminder of this section C ⊆ Fk×m
q

denotes a (possibly non-linear) code, and χ is a fixed non-
trivial character of (Fq,+).

Definition 9. Let Y ∈ Fk×m
q . Define the character map on

(Fk×m
q ,+) associated to Y by

φY : Fk×m
q → C× : X 7→ χ(Tr (Y XT )).

Clearly φX(Y ) = φY (X) for all X,Y ∈ Fk×m
q . We let Φ

denote the km × km symmetric matrix with values in C×
defined as having entry φY (X) in the column indexed by
X and in the row indexed by Y . Define the Q-module of
length km: C :=

{
(AX : X ∈ Fk×m

q ) : AX ∈ Q
}
. For each

Y , extend φY to a character of C as follows:

φY : C→ C× : A = (AX : X ∈ Fk×m
q ) 7→

∑
X

AXφY (X).

Then ΦA = (φY (A) : Y ∈ Fk×m
q ) ∈ C. It can be shown

that the rows of Φ are pairwise orthogonal. Therefore Φ2A =
ΦT ΦA = qkmA, and so A is determined completely by its
transform

A∗ := ΦA = (φY (A) : Y ∈ Fk×m
q ).

Any subset U ⊆ Fk×m
q can be identified with the 0-1

vector U = (UZ : Z ∈ Fk×m
q ) ∈ C, where

UZ =

{
1 if Z ∈ U ,
0 otherwise.

For any X ∈ Fk×m
q , the translate code C + X ⊆ Fk×m

q is
then identified with C +X = (CZ−X : Z ∈ Fk×m

q ). It is
straightforward to show that φY (C +X) = φY (C)φY (X).
This immediately yields the inversion formula

CX =
1

qkm

∑
Y

φY (C +X) =
1

qkm

∑
Y

φY (C)φY (X).

For each i ∈ [k] we let Ωi be the set of matrices in Fk×m
q

of rank i.

Claim (see [10]). Let Y ∈ Fk×m
q . Then φY (Ωi) depends

only on the rank of Y . If Y has rank j, then this is given by

Pi(j) :=

k∑
`=0

(−1)i−`q`m+(i−`
2 )
[
k − `
k − i

]
q

[
k − j
`

]
q

.

In terms of the transform of Ωi, the claim gives

ΦΩi = (Pi(rk(Y )) : Y ∈ Fk×m
q ).

It is known [9], [10] that the Pi(j) are orthogonal polyno-
mials of degree i in the variable q−j . Therefore, any rational
polynomial γ of degree at most k in q−j can be expressed as
a Q-linear combination of the q-Krawtchouck polynomials:
γ(x) =

∑k
j=0 γjPj(x). Again, the orthogonality relations

mean that the coefficients can be of γ can be retrieved as

γj =
1

qkm

k∑
i=0

γ(i)Pi(j).

We let P = (Pi(j)) denote the (k+1)× (k+1) matrix with
(j, i)-th component equal to Pi(j). Then the transform of
B(C) = (Bi(C) : 0 ≤ i ≤ k) is defined as

B∗(C) := |C|−1B(C)P.

The coefficents of B∗(C) are non-negative (see e.g. [10,
Theorem 3.2]).

Definition 10. The external distance of a code C ⊆ Fk×m
q

is the integer

σ∗(C) := |{1 ≤ i ≤ k : B∗i (C) > 0}|.

We can now upper-bound the covering radius of a general
rank-metric code in terms of its external distance as follows.

Theorem 11 (external distance bound, Theorem 27 of [2]).
For any code C ⊆ Fm×n

q we have ρ(C) ≤ σ∗(C).

VI. INITIAL SET BOUND

In this section we propose a definition of initial set of
a linear rank-metric code inspired by [17]. Moreover we
exploit the combinatorial structure of such set to derive an
upper bound for the covering radius of the underlying code.

Note that our technique to derive the bound relies on the
specific “matrix structure” of rank-metric codes.

Notation 12. For positive integers a, b and a set S ⊆ [a]×[b],
we denote by I(S) ∈ Fa×b

2 be the binary matrix defined by
I(S)ij := 1 if (i, j) ∈ S, and I(S) := 0 if (i, j) /∈ S.
Moreover, we denote by λ(S) the minimum number of lines
(rows or columns) required to cover all the ones in I(S).

The initial set of a linear code is defined as follows.

Definition 13. Denote by � the lexicographic order on the
set [k] × [m]. The initial entry of a non-zero matrix M ∈
Fk×m
q is in(M) := min�{(i, j) : Mij 6= 0}. The initial set

of a non-zero linear code C ⊆ Fk×m
q is

in(C) := {in(M) : M ∈ C, M 6= 0}.

We start with a preliminary lemma that summarizes two
important properties of the initial set of a code.

Lemma 14. Let C ⊆ Fk×m
q be a non-zero linear code. The

following hold.
1) dim(C) = |in(C)|,
2) in(C) ⊆ [k − d(C) + 1]× [m].

We can now state the main result of this section, which
provides an upper bound on the covering radius of a linear
rank-metric code C in terms of the combinatorial structure
of its initial set.

Theorem 15 (initial set bound, Theorem 34 of [2]). Let
C ⊆ Fk×m

q be a non-zero linear code. We have

ρ(C) ≤ d(C)− 1 + λ(S),

where S := [k − d(C) + 1]× [m] \ in(C).

Remark 16. The initial set of a linear code C ⊆ Fk×m
q can

be efficiently computed from any basis of C as follows. Let

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

650



w : Fk×m
q → Fmk

q denote the “vectorization” map that sends
a matrix M to the mk-vector obtained by concatenating
the rows of M . Now given a basis {M1, ...,Mt} of C,
construct the vectors v1 := w(M1), ..., vt := w(Mt). Then
perform Gaussian elimination on {v1, ..., vt} and obtain
vectors v1, ..., vt. Clearly, {w−1(v1), ..., w−1(vt)} is still a
basis of C, and one can check that

in(C) = {in(w−1(v1)), ..., in(w−1(vt))}.

The following example shows that Theorem 15 gives in
some cases a better bound than Corollary 11 for the covering
radius of a linear code.

Example 17. Let q = 2 and k = m = 3. Denote by C the
code generated over F2 by the matrices1 0 0

0 0 1
0 0 0

 ,
0 1 0

0 0 0
1 0 0

 ,
0 0 0

1 0 0
0 1 0

 ,
0 0 0

0 1 1
1 0 0

 .
We have dim(C) = 4 and d(C) = 2. Moreover, since0 0 1

0 0 0
0 0 0

 ,
0 0 0

1 0 0
0 1 0

 ,
0 0 1

1 0 0
0 1 0

 ∈ C⊥,
we have σ(C⊥) = 3, and so Corollary 11 gives ρ(C) ≤
3. On the other hand, the initial set of C can be computed
as in(C) = {(1, 1), (1, 2), (2, 1), (2, 2)}. Thus following the
notation of Theorem 15 we have S = {(1, 3), (2, 3)} and
λ(S) = 1. It follows that ρ(C) ≤ d(C) − 1 + λ(S) = 2.
Therefore Theorem 15 gives a better bound on ρ(C) than
Corollary 11. In fact, one can check that ρ(C) = 2.
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