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Abstract— A necessary condition for stability of a finite-
dimensional linear time-invariant system is that all the co-
efficients of the characteristic equation are strictly positive.
However, it is well-known that this condition is not sufficient,
except for n less than 3. In this paper, we show that any
polynomial that has positive coefficients cannot have roots on
the nonnegative real axis. Conversely, if a polynomial has no
roots on the positive real axis, a polynomial with positive
coefficients can be found so that the product of the two
polynomials also has positive coefficients. A simple upper bound
for the degree of this multiplier polynomial is given. One
application of the main result is that under a strict condition, it
is possible to find a non-minimal realization of a given transfer
function using only positive multipliers (except for the “minus”
in the standard feedback comparator).
Keywords: positive polynomial, root locations, positive-real,
positive system
AMS Classification: 12D10, 26C10, 93D99

I. INTRODUCTION

All coefficients of the polynomial

a(s) = s6 + 4s5 + 3s4 + 2s3 + s2 + 4s+ 4

(Example 3.30 in [8]) are positive. Positivity of the
coefficients is a necessary condition to have all its roots in
the open left half plane. This condition is not sufficient,
as is the case in the above polynomial. By performing the
Routh-Hurwitz test, it can be seen that this polynomial will
have two roots in the right-half plane.
This prompts the question as to where precisely the roots
of a polynomial can or cannot lie. This short note resolves
this question by identifying such a root property. It also
goes beyond, and shows that any polynomial satisfying this
root property is a factor of a polynomial with all positive
coefficients.

Some results related to this problem appeared in [2].
The authors asked the question if a conjugate pair of zeros
can be factored out from a polynomial with nonnegative
coefficients so that the resulting polynomial still has nonneg-
ative coefficients. Sendov [14] applies their work to prove
a Gauss-Lucas type theorem for non convex (symmetric
w.r.t. R) sectors in C. Much earlier, Obrechkoff proved an
upper bound on the number of roots in the sector {s ∈
C \ {0}| arg(s)| < θ} for θ ∈ (0, π/2). The bound implies
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that no roots can lie on R+. Handelman [9] showed that for
a monic (Laurent) polynomial, p ∈ R[s], with non-negative
roots, there exists a positive integer m such that (1+s)mp(s)
has only positive coefficients. A short proof of this fact
is given by Akiyama [1]. In this paper we give an easily
computable bound for m and show its asymptotic behavior
as the roots of p get closer to the real axis. Dubickas [7]
solves an algebraic number theoretic problem, for which he
proved the auxiliary lemma:
Lemma [7]: Let s0 ∈ C \ R. Then there exists a monic
polynomial q ∈ Q[s] such that the polynomial (s− s0)(s−
s0)q(s) has positive coefficients.
This settled a conjecture by Kuba [11]. This problem is
further studied by Borel [3], Zaı̈mi [15], and Brunotte. In
[4], Brunotte finds for p of second degree, the lowest degree,
δ, of q such that pq has positive coefficients and the lowest
degree, δ0, of a polynomial q0 such that pq0 has nonnegative
coefficients, thus extending a result of Meissner [12], who
constrained q to have positive coefficients. Brunotte shows
that these polynomials can be calculated in finitely many
steps. The exact formula for δ when deg(p) > 2 is still
unknown. In [5] it is shown that if p ∈ Z[s], a polynomial
q ∈ Z[s] exists. Our contribution is to determine a readily
computable polynomial although not of minimal degree that
will solve the problem, make connections with positive
realness, and look at possible applications to positive system
theory.

A. Notation for some important point sets

If x ∈ C, then its real and imaginary parts are denoted by
respectively ℜ(x) and ℑ(x).

R− = {x ∈ R|x < 0}

R+ = {x ∈ R|x > 0}

C− = {x ∈ C|ℜ(x) < 0}

C+ = {x ∈ C|ℜ(x) > 0}

C0 = {x ∈ C|ℜ(x) = 0}

Cs− = {x ∈ C|ℜ(x) < 0} \ R−

Cs+ = {x ∈ C|ℜ(x) > 0} \ R+

Cs0 = {x ∈ C|ℜ(x) = 0} \ {0}

The closure of these sets (whenever appropriate) will be
denoted by an overbar.
With these number sets, the complex plane C partitions as

C = {0} ∪ R− ∪ R+ ∪ Cs− ∪ Cs+ ∪ Cs0.
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B. Notation for some important sets of polynomials

Let K[s] denote the set of polynomials in the
indeterminate s, with coefficients in the set K . In particular,
denote
R+[s]: Set of polynomials in indeterminate s with strict

positive coefficients.
R̂+[s]: Set of monic polynomials in indeterminate s with

strictly positive coefficients.
R+[s]: Set of polynomials in indeterminate s with non-

negative coefficients.
The subset of polynomials in K[s] that are monic, i.e., the
leading degree coefficient is 1, will be denoted by K̂[x].

Define also the set of polynomials in R[s] that are strictly
positive valued for s ∈ R+.

P [s] = { p ∈ R[s] | p(R+) ⊂ R+ }.

Likewise, denote the polynomials that are nonnegative valued
on R+ by

P[s] = { p ∈ R[s] | p(R+) ⊂ R+ }.

Finally, let the polynomial sets R[x] and R[x] respectively
be defined by

R[s] = { r ∈ R[s] | ∃q ∈ R+[s], s.t. rq ∈ R+[s] },

and

R[s] = { r ∈ R[s] | ∃q ∈ R+[s], s.t. rq ∈ R̂+[s] }.

The multiplier polynomial q in the above definitions will be
called an auxiliary polynomial for r.

II. ALGEBRAIC STRUCTURE

Let + and × indicate the usual addition and multiplication
of polynomials. It is readily seen that (R+[x],+) is
a semigroup and (R+[x],+) a monoid with the zero
polynomial as neutral element. Likewise, (R+[x],×),

(R+[x],×), (R̂+[x],×), and (R̂+[x],×) are semigroups
with neutral element 1. It follows that the property of
having “positive coefficients” is preserved under addition
and multiplication. This will be useful in the proof of
Theorem 2 below. We also note that if r ∈ R[s], the
auxiliary polynomial q of r is not unique. Indeed if
p ∈ R+[s], then pq ∈ R+[s] and r(pq) = p(rq) ∈ R+[s] by
the semigroup property. The same holds for R[s].
Even if q is restricted to be monic and of lowest degree, it
may not be unique. This can be shown by (counter)-example.

Since C is a closed field, the fundamental theorem of
algebra implies that if a ∈ C[s] has degree n, it has n
roots (counting multiplicity) in C. The set of roots of the
polynomial will be denoted by Σ(a). Since this is a set it
does not give information about the multiplicity of each
root. If a ∈ R[s], its roots are either real or occur in complex
conjugate pairs.

Let now the monic polynomial, a ∈ R[s], have k− roots
in R−, k+ roots in R+, root 0 with multiplicity k0, ℓ−

complex conjugate root pairs in C−, ℓ+ conjugate root
pairs in C+, and ℓ0 conjugate root pairs in Cs0, the strict
imaginary axis. Then the polynomial a(s) may be factored as
a+(s)a−(s)a0(s)â(s), where each of the factors are monic
and

Σ(a+) ⊂ R− ∪ Cs− = C−

Σ(a−) ⊂ Cs+

Σ(a0) ⊂ {0} ∪ Cs0 = C0

Σ(â) ⊂ R+.

Furthermore,

a+(s) =

k−∏

i=1

(s+ ri)

ℓ−∏

i=1

(s2 + 2σis+ (σ2
i + ω2

i )), (1)

ri > 0, σi > 0, ωi > 0. (2)

a−(s) =

ℓ+∏

i=1

(s2 − 2ξis+ (ξ2i + η2i )), (3)

ξi > 0, ηi > 0. (4)

a0(s) = sk0

ℓ0∏

i=1

(s2 + ν2i ), (5)

νi > 0, (6)

â(s) =

k+∏

i=1

(s− ρi), ρi > 0 (7)

Consequently, the degree, n, of the polynomial a(s) is
expressed as

n = k+ + k− + k0 + 2(ℓ+ + ℓ− + ℓ0)

A. Necessary Conditions

The following implications are easily shown for a poly-
nomial a ∈ R[s]:

Σ(a) ⊂ R− ∪ Cs− = C−

⇒ all coefficients positive : a ∈ R+[s].

Σ(a) ⊂ R− ∪ Cs− ∪ {0} ∪ Cs0

= C− ∪C0 = Cc
+

⇒ all coefficients nonnegative : a ∈ R+[s].

III. PREPARATORY RESULT

The main theorem of this paper states that r ∈ R[x] iff
Σ(r) ⊂ C \ R+. Moreover, it follows from the proof of the
main theorem that an auxiliary multiplier polynomial, q,
may be found in R+[x].

Let a(s) be a polynomial with all its roots in Cs+. We
will show that a polynomial q(s) exists such that all roots
of the product p(s) = a(s)q(s) has all positive coefficients,
and that this is not possible if a(s) has a root in R+. We
shall call such a polynomial complementary to a(s).
This implies that any polynomial with all positive coefficients
has all its roots in Cs, the complex plane with a slit.
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Lemma 1: The first degree polynomial, (s − 1), cannot
be multiplied by a real polynomial to yield a polynomial
with positive coefficients.

Proof: Assume the contrary and let q(s) =
∑n

i=0 qis
n−i be

the multiplier polynomial. Then

(s− 1)q(s) = q0s
n+1 +

n−1∑

i=0

(qi+1 − qi)s
i − qn

With q0 = 1, it is easily seen that the coefficients of the
nonzero powers are strictly positive if

qn > qn−1 > · · · > q1 > q0 > 0

but then the constant term −qn is negative contradicting the
assumption. �

Alternatively, as pointed out by a reviewer, the assumption
p(s) = (s − 1)q(s) ∈ R+[s] yields the contradiction
0 = p(1) > 0.

Lemma 2: Given the second degree polynomial,
(s2 − 2s cosα + 1), with 0 < α ≤ π/2, there
exists an integer n such that the polynomial
c(s;α, n) = (s2 − 2s cosα + 1)(s + 1)n has positive
coefficients. The smallest such n is upper bounded by
2⌊ cosα

1−cosα⌋+ 1.

Proof: The given polynomial, a, has the complex roots r1 =
cosα + i sinα, and r2 = cosα − i sinα. The same holds
for the polynomial c. In addition, c(s) also has roots r3 =
r4 = . . . = rn+2 = −1. The coefficients of the polynomial
c(s) =

∑n+2
k=0 cks

n+2−k are given by Newton’s identities:

c0 = 1

c1 = (−1)

n+2∑

i=1

ri

c2 = (−1)2
∑

i6=j

rirj

...

ck = (−1)k
∑

i1,...,ik
disjoint

k∏

p=1

rip

...

cn+2 = (−1)n+2
n+2∏

p=1

rp.

In terms of the zero structure of c(s), it is directly seen that

c1 = (−1) [−n+ 2 cosα]

c2 = (−1)2
[(

n

2

)

(−1)2+

(

n

1

)

(−1)12 cosα+1

]

c3 = (−1)3
[(

n

3

)

(−1)3+

(

n

2

)

(−1)22 cosα+

(

n

1

)

(−1)

]

c4 = (−1)4
[(

n

4

)

(−1)4+

(

n

3

)

(−1)32 cosα+

(

n

2

)

(−1)2
]

...

ck = (−1)k
[(

n

k

)

(−1)k +

(

n

k − 1

)

(−1)k−12 cosα+

(

n

k − 2

)

(−1)k−2

]

...

cn+1 = (−1)n+1

[(

n

n

)

(−1)n2 cosα+

(

n

n− 1

)

(−1)n−1

]

cn+2 = (−1)n+2

[(

n

n

)

(−1)n
]

.

This gives

c1 = n− 2 cosα

c2 =

(
n
2

)
−

(
n
1

)
2 cosα+ 1

c3 =

(
n
3

)
−

(
n
2

)
2 cosα+

(
n
2

)

c4 =

(
n
4

)
−

(
n
3

)
2 cosα+

(
n
2

)

...

ck =

(
n
k

)
−

(
n

k − 1

)
2 cosα+

(
n

k − 2

)

...

cn+1 = −

(
n
n

)
2 cosα+

(
n

n− 1

)

cn+2 = 1

It follows that all coefficients are positive if cosα < n/2,
and if for all k = 2, . . . , n

cosα <

1
k!(n−k)! +

1
(k−2)!(n−k+2)!

2
(k−1)!(n−k+1)!

=
(n− k + 2)(n− k + 1) + k(k − 1)

2k(n− k + 2)
.

Note the equalities c0 = cn+2, c1 = cn+1, and by symmetry
properties of the binomial coefficients, ck = cn+2−k in
general. Consider now the cosine bounds

B(k, n) =
(n− k + 2)(n− k + 1) + k(k − 1)

2k(n− k + 2)
.

If n is even, set n = 2m, and let k = m + 1 + p for some
integer p. It follows that

B(m+ 1 + p, 2m) =
m(m+ 1) + p2

(m+ 1 + p)(m− p+ 1)

=
m(m+ 1) + p2

(m+ 1)2 − p2
.

It is now readily seen that this bound is minimal for p = 0,
hence the minimum of B(k, 2m) occurs for k = m+1, and
equals B(m+ 1, 2m) = m

m+1 .

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

261



Likewise, if n is odd, set n = 2m+ 1. The expression k =
m+ 1 + p leads to

B(m+ 1 + p, 2m+ 1) =
m2 + 2m+ 1 + p2 − p

(m+ 1 + p)(m+ 2− p)

=
(m+ 1)2 + (p2 − p)

(m+ 1)(m+ 2)− (p2 − p)
.

This expression is minimal for p2 − p = 0, which yields
p = 1 and p = 0. Hence the minimal bound is obtained for
k = m+ 1 and k = m+ 2, and evaluates to

B(m+ 1, 2m+ 1) = B(m+ 2, 2m+ 1) =
m+ 1

m+ 2
.

Observe that m
m+1 < m+1

m+2 is true for all m ∈ N since m(m+

2) = (m+ 1)2 − 1. Let Uk =
[

k
k+1 ,

k+1
k+2

)
, then the disjoint

union U =
⋃∞

k=0 Uk is equivalent to [0, 1). The cos function
restricted to the interval

(
0, π

2

]
is a surjective mapping to

[0, 1), and so for any given r ∈ U there exist α ∈
(
0, π

2

]
.

Consequently, given α in the statement of the Lemma, there
exist M ∈ N such that

cosα ∈

[
M

M + 1
,
M + 1

M + 2

)
. (8)

By the monotonicity, cosα < m+1
m+2 for all m ≥ M .

Therefore, for any n ≥ 2M + 1, c(s) has positive
coefficients. �

By (8), the left hand side inequality gives M ≤ cosα
1−cosα ,

while the right hand side inequality yields M > 2 cosα−1
1−cosα .

This gives
cosα

1− cosα
− 1 < M ≤

cosα

1− cosα
.

Since the size of the interval is 1 and the equality only
holds for the right hand side, M is uniquely defined as
M = ⌊ cosα

1−cosα⌋. The resulting bound on the degree is
N = 2M + 1, and is displayed in Figure 1 in function of
the argument α ∈ (0, π

2 ). From Figure 2 it can be seen that

Fig. 1. The bound N(α) on the degree for the auxiliary polynomial.

the degree approaches 2/α2 as α → 0.
For the quadratic polynomial x2 − 2 p

qx + 1 with p, q ∈ Z

relatively prime and 0 < p < q, we can apply the bound
given by Zaı̈mi [15] for the corresponding problem in Q[x].
Letting α = p

q , the roots of the quadratic polynomial are
a± = cosα ± i sinα, with sinα 6= 0. These are algebraic

Fig. 2. Asymptotic behavior of 1

2
α2N(α).

numbers with minimal polynomial Mina±
(x) = x2− 2 p

qx+
1. Hence the degree is d = 2. The discriminant is

lcm(1, q)2d−2(a+ − a−)
2 = −4(q2 − p2).

The Mahler measure of a+ is

M = lcm(1, q) max(1, |a+|) max(1, |a−|) = q,

so that Zaı̈mi’s upper bound for the degree is

2πd

arcsin(|∆|1/2d−(d+3)/2M−d+1)
=

4π

arcsin(2−3/2|
√
1− p2

q2 )

Our bound gives
1 + 2⌊

p

q − p
⌋,

which is more tight for α = arccos(p/q) > 0.11185 (rad).
For α = π/3 corresponding to p = 1 and q = 2, the bounds
are 3 (ours) and 41 (Zaı̈mi). The minimal degree of q(s)
is also discussed in Theorem 6 of [4]. For the quadratic
polynomial x2 − 2x cos θ + 1, this degree is found to be
⌊π
θ ⌋ − 1. For p = 1, and q = 2, this gives 3.

IV. MAIN RESULT

Now, we are in a position to state our main result:

Theorem 1: If a polynomial has all strictly positive
coefficients then it cannot have a root in R+.

Proof: Let n be the degree of the polynomial. For n = 1, the
result is obvious. Now proceed by induction. Assume that the
statement is true for the order n. Pick q(s) a polynomial of
degree n + 1 with all positive coefficients, then there exist
p(s), a polynomial of degree n with all positive coefficients,
such that q(s) = sp(s)+q0 where q0 > 0. By the assumption,
p(s) cannot have roots in the positive real axis (including 0).
It follows that the roots of q(s) must satisfy

sp(s) = s

n∏

i=1

(s− ci) = −q0 < 0.

Taking the angular part of this complex equation

arg(s) +

n∑

i=1

arg(s− ci) = π. (9)
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If there were a root on the positive real axis, then arg s = 0,
and for each real root ci < 0 of p(s) it also holds that
arg(s − ci) = 0. For every complex conjugate pair, the
sum of the arguments modulo 2π is zero as well. This
contradicts the (9). Hence q(s) cannot have a root on the
positive real axis.�

Undoubtedly, the classical control engineer will recognize
the celebrated root locus principle in the above proof. A
simple alternative proof is to take c ≥ 0, and note that then
p(c) ≥ p(0) > 0, hence p(c) 6= 0.
It should also be obvious that the above implication cannot
be reversed. A simple counterexample is the second order
polynomial s2 − 2s+ 2. It has no roots on the positive real
axis, but fails to have all positive coefficients.
However, the following will be shown:

Theorem 2: If a(s) has no roots on the positive real axis
(including zero), R+, then there always exist a polynomial
p(s) such that the product a(s)p(s) has all positive
coefficients.

This fact is known since E. Meissner [12] and A. Durand
(see [3], Théorème 2), but we present an alternate proof.

Proof: Pick a(s) such that no roots are on the positive
real axis (including zero), then a(s) = a+(s)a−(s)a0(s) as
defined in Eqn 1 where k+, k0 = 0. By the construction of
the factors, a+ have all positive coefficients. It is enough to
show that there exist p(s) such that a−(s)a0(s)p(s) have all
positive coefficients. Since all the roots in a−(s)a0(s) are
complex conjugated, the polar expression of the roots can be
written as sj = rje

iθj and s∗j = rje
−iθj where rj > 0 and

θj ∈ (0, π
s ] for all 1 ≤ j ≤ n−k−−2ℓ−. The multiplication

of two conjugated polynomials can also be written in terms
of rj and θj by (s − sj)(s − s∗j ) = (s2 − 2 cos θjs + r2j ).
By factoring r2j , we have (( s

rj
)2 − 2 cos θj

s
rj

+ 1). Let
s1 = s

rj
, then by Lemma 2, there exist nj such that

(s21− 2 cos θjs1+1)(s1+1)nj have all positive coefficients.
Since rj is a positive constant, replacing s1 = s

rj
would

not change the sign of the coefficients. Finally, by letting
q(s) =

∏n−k−−2ℓ−
j=1 ( s

rj
+ 1)nj be a product of all

such polynomials, a−(s)a0(s)p(s)q(s) have all positive
coefficients. �

Remark 1: The interesting fact of the theorem is that we
place auxiliary roots with the same radius rj in the negative
real axis. The multiplicity of the roots solely depend on the
angle θj . In contrast, the roots of the multiplier can be only
computed numerically using Brunotte’s algorithm [4]. We
have tried to multiply with (1 − 2 cosβs + s2) instead of
(s + 1)n. It turns out that if α > π/4 there always exist β
which makes all the coefficient positive, as is easily seen,
since (1−2s cosα+s2)(1−2s cosβ+s2) = 1−2s(cosα+
cosβ)+2s2(1+cosα cosβ)−2s3(cosα+cosβ)+s4 leads
to the conditions cosα+cosβ < 0 and 1+2 cosα cosβ > 0,

and with cosα > 0 this yields

−
1

2 cosα
< cosβ < − cosα.

Remark 2: For an analogue for a product with nonnegative
coefficients, see [6], [10].

The foregoing results lead to an upper bound for the
degree of the complementary polynomial.

Theorem 3: Let the polynomial p be monic, then

p ∈ R[s] ⇐⇒ p ∈ P [s].

Proof:
⇒: By definition, there exists q ∈ R+[s] such that
pq ∈ R+[s]. Any polynomial in R[s] assumes strictly
positive values on R+ as its evaluation is a sum of products
of all strictly positive quantities. Hence p(r)q(r) and q(r)
are strictly positive for all r > 0. Hence p(r) > 0 ∀r ∈ R.
⇐: If p(r) > 0 for all r > 0, then p obviously cannot have
a zero on R+. By the main theorem, this characterizes the
set R[x]. �

Note that Theorem 3 gives an alternate characterization
P [s] = R[s]. In fact a little more can be said by invoking
the continuity of polynomials:

p ∈ R[s] ⇔ ℜp(s) > 0 s ∈ N+

where N+ is a sufficiently small neighborhood of the
positive real axis. With this, the notion of a positive real
function comes to mind. The function f(s) is positive real
if ℜf(s) > 0 whenever ℜs > 0 and f(r) > 0 for r ∈ R+.

V. TOPOLOGY

The following are results of a more topological nature.

Lemma 3: If p ∈ P [s], then ℜp(s) > 0 in a neighborhood
of R+.
Proof: Suppose there exist ǫ, r1 > 0 such that if s ∈ C

satisfies |s− r1| < ǫ and ℑs 6= 0, then ℜp(s) = α ≤ 0. Let
r2 = p(r1) > 0, then by the continuity of p at r1, there exist
s1 ∈ C\R+ such that |s1 − r1| < ǫ and |p(s1)− r2| < r2/2.
Let p(s1) := α1 + β1i, then α ≤ 0, and so,

|p(s1)− r2| =
√
(α1 − r2)2 + β2

1 ≥
√
r22 + β2

1 ≥ r2 (10)

This is a contradiction, hence, the lemma holds. �

Theorem 4: Let p ∈ R[s], then there exists a positive real
γ ∈ (0, 1) such that P (s) = p(sγ) is a positive real function.

Proof: Since ℜp(s) is positive over the wedge | arg s| < θ
for some θ ∈ (0, π/2), the result follows by applying the
conformal map s → sγ with γ = 2θ

π . �
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VI. AN ALTERNATIVE SOLUTION

Consider a pair of complex conjugate poles, s± = e±iπ/N ,
where N is an odd integer. It is easily verified that s± are N -
th roots of −1. All N -th roots are of the form ei(2k+1)π/N ,
where k = 0, . . . , N − 1. Indeed, [ei(2k+1)π/N ]N =
ei(2k+1)π = −1. Consequently, the product of the factors
(s − ei(2k+1)π/N ) is an N -th order polynomial, sN + 1.
Thus we conclude that a complementary polynomial for
s2 − 2 cos π

N s+ 1 is the polynomial

q0(s) = (s+ 1)

N−2∏

k=1

(
s2 − 2 cos

(2k + 1)π

N
+ 1

)
.

The problem is that this only yields a product with nonnega-
tive coefficients. But any polynomial of the form sN +1 can
be multiplied by an arbitrary monic polynomial, q1 in R[s] of
degree N−1 to yield a polynomial in R[s] of degree 2N−1.
Hence the full complementary polynomial is the polynomial
q0(s)q1(s). Using our main result, the degree would have

been equal to 2
⌊

cos π
N

1−cos π
N

⌋
+ 1.

While the degree using the alternative method increases
linearly with N , as opposed to quadratically using our main
result, it turns out that the result is very sensitive towards
perturbations, as shown below.

A. Perturbation analysis

Let the given complex conjugate pole pair be ei(ǫ+π/N).
Then the product is

(sN + 1)
s2 − 2 cos(π/N + ǫ)s+ 1

s2 − 2 cos(π/N)s+ 1
.

This is

(sN+1)

[
1− 2s

cos(π/N)(1 − cos ǫ) + sin(π/N) sin ǫ

s2 − 2 cos(π/N)s+ 1

]

or

(sN+1)

[
(s2 + 1)(1− cos ǫ) + 2 sin( π

N ) sin ǫ

s2 − 2 cos( π
N )s+ 1

+cos(
π

N
)

]
.

which also reduces to

(sN+1)

[
2 sin(

ǫ

2
)
(s2 + 1)(sin ǫ/2) + 2 sin(π/N) cos(ǫ/2)

s2 − 2 cos(π/N)s+ 1

+ cos(π/N)] .

which for small |ǫ| is approximately

(sN + 1)

[
2ǫ

(s2 + 1) sin(π/N)

s2 − 2 cos(π/N)s+ 1
+ cos(π/N)

]
.

B. Generalization

Suppose now that the complex conjugate pair of
roots is s± = ei(2k+1)π/N for some k such that
cos((2k + 1)π/N) > 0. Then it is necessary that
2k + 1 < N/2. Thus, k < N−2

4 .

VII. APPLICATION: POSITIVE SYSTEM REALIZATION

Our main result leads now to the following application
to realizability of systems by a positive system: Consider
an irreducible proper transfer function, H(s) = b(s)

a(s) , having

neither poles nor zeros on the positive real axis, R+. In
fact, irreducibility may be relaxed to “numerator, b(s), and
denominator, a(s), not having common roots on the positive
real axis”. We shall describe the latter by R+-irreducibility.
We get the following theorem:

Theorem 5: A proper R+-irreducible rational function
H(s) = b(s)

a(s) having neither poles nor zeros on the positive
real axis is always realizable in a form using only strictly
positive multipliers (except, of course, for the standard
comparator at the feedback).

Proof: By Theorem 2, auxiliary polynomials α(s) and β(s)
exist, both in R+[s], such that A(s) = a(s)α(s) and B(s) =
b(s)β(s) are in R+[s].
Let now

b(s)

a(s)
·
β(s)

α(s)
=

B(s)

A(s)
= Hs(s),

with Hs(s) ∈ R+(s), the set of rational functions in s with
strictly positive coefficients. But then the product (before
reduction!)

Hs(s) ·
α(s)

β(s)

def
= Hs(s)Ha(s),

where we defined an auxiliary transfer function,
Ha(s) ∈ R+(s), also has all positive coefficients. Its
denominator has degree δa + δα + δβ , and its reduced
transfer function is the given proper H(s). Now the product
HsHa is realizable without differentiators (for continuous
time systems) if δa + δα + δβ ≥ δb + δβ + δα, which holds
since H(s) was assumed to be proper, thus proving the
theorem. �

VIII. CONCLUSIONS AND BEYOND

We characterized the set of polynomials with positive
coefficients in terms of their root locations. The important
root set is thus the slitted plane Cs = C \R+. What can be
said if instead we take for the root set the rotated slitted plane
eiθCs? (Ans: A scaled version). In view of [4] the polynomial
q(s) = (s + 1)N(α) is not necessarily the complementary
polynomial of r(s) = s2 − 2s cosα+ 1 with lowest degree,
but it is readily computable (its coefficients are the binomial
coefficients). We also made a connection to the notion of
positive realness, and applied our results to the realization
of positive systems.
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