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Abstract—In this paper, a distributed resource allocation
problem is investigated for disturbed continuous-time multi-
agent systems, where the communication among agents is
depicted by strongly connected and weight-balanced digraphs.
A distributed continuous-time algorithm is developed based
on internal model principle, and the algorithm can ensure
the multi-agent systems exponentially converge to the optimal
allocation even in the presence of external disturbance.

Index Terms—Distributed optimization, resource allocation,
multi-agent systems, disturbance rejection.

I. INTRODUCTION

Owing to the fast development of large-scale system-
s/networks, the control and optimization of continuous-time
multi-agent systems have drawn many research interests. In
addition to multi-agent consensus [1], [2] and containment
[3], distributed continuous-time optimization problems have
attracted more and more attention such as [4] in recent years
as general cooperative problems.

As one of the important optimization problems, resource
allocation is a fundamental issue in many applications, such
as power systems [5], and communication networks [6]. For
example, [7] has developed a weighted gradient algorithm
for a resource allocation problem with general objective
functions.

For many physical systems, they inevitably suffer the
influence of external disturbance. However, in most existing
optimization tasks, the influence of external disturbance on
system is not taken into account, such as [8]. The distributed
optimization problem with external disturbance was studied
in [9], in which reducing communication cost and subgradi-
ent measurement burden is not taken into account.

Many existing distributed algorithms for resource allo-
cation problems rely on undirected graphs, such as [10].
It is well-known that balanced digraphs are less restrictive
and more general than undirected graphs. There are a few
results about the resource allocation with balanced directed
communication networks (see [11]).

The motivation of this paper is to study a resource alloca-
tion problem of disturbed multi-agent systems. We propose
a continuous-time algorithm to solve this problem and prove
its convergence with the help of Lyapunov functions and
convex analysis. The technical contributions are summarized
as follows. (i) We consider a resource allocation problem
of disturbed multi-agent systems over strongly connected
and weight-balanced digraphs, which is an extension of the

problems in [10], [11] by considering external disturbances
and/or weight-balanced digraphs. (ii) We propose a distribut-
ed continuous-time internal model-based algorithm to solve
the problem, where the internal model is used to reject
external disturbances. (iii) We analyze the convergence of
the algorithm, which can ensure the multi-agent systems
exponentially converge to the optimal allocation.

The organization of this paper is as follows. In Section
II, preliminaries are introduced and the considered resource
allocation problem is formulated. In Section III, the main
result is presented. Finally, in Section IV, conclusion is given.

Notations: R and N are the sets of real and natural number-
s, respectively. Rn is the n-dimension Euclidean space. ⊗ and
‖·‖ denote the Kronecker product and the standard Euclidean
norm, respectively. AT is the transpose of matrix A. xi is the
ith element of vector x, and col(x1, ..., xn) = [xT1 , ..., x

T
n ]T .

In is a n × n identity matrix. 1n and 0n are the column
vectors of n ones and zeros, respectively.

II. PRELIMINARIES AND FORMULATION

In this section, we first give some preliminary knowledge
and then formulate our problem.

A. Graph Theory and Convex Analysis

The following concepts about graph theory can be found
in [12]. Consider a network of N agents with interaction
topology described by a directed graph (or simply a digraph)
G := {V, E}, where V = {1, . . . , N} is the node set, and
E ⊆ V × V is the edge set. An edge of G is denoted by a
pair of nodes (i, j) ∈ E if j can send its information to i. A
path is a sequence of vertices connected by edges. A digraph
is strongly connected if there is a path between any pair of
vertices. A weighted digraph G := {V, E , A} consists of a
digraph G = {V, E} and an adjacency matrix A = [aij ]N×N
with aij being the weighting of edge (i, j), where aij > 0 if
(i, j) ∈ E , and aij = 0, otherwise. It is noted that aii = 0 for
any i ∈ V , which indicates no self-connection in the graph.
Besides, for an edge (i, j) ∈ E , i is called the out-neighbor of
j, and j is called the in-neighbor of i. The weighted in-degree
and weighted out-degree of node i are diin =

∑N
j=1 aij and

diout =
∑N
j=1 aji, respectively. A digraph is weight-balanced

if for any node i ∈ V , the weighted in-degree and weighted
out-degree coincide. The Laplacian matrix of G is L = Din−
A, where Din = diag{d1in, . . . , dNin} ∈ RN×N . Note that
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L1N = 0. Besides, 1TNL = 0 and L + LT is positive
semidefinite.

The eigenvalues of L+LT are denoted by λ̂1, . . . , λ̂N with
λ̂i ≤ λ̂j for i ≤ j. For a strongly connected and weight-
balanced digraph, zero is a simple eigenvalue of both L and
L+ LT . The following definitions can be found in [13].

A function f : Rn → R is convex if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y),

∀ x, y ∈ Rn, ∀ α ∈ [0, 1].

A differentiable function f : Rn → R is ω-strong convex
(ω > 0) on Rn if

(x− y)T (∇f(x)−∇f(y)) ≥ ω‖x− y‖2, ∀ x, y ∈ Rn.

B. Problem Formulation

In the considered resource allocation problem, there are
N agents, and their communication topology is described
by a weight-balanced digraph G with the node set V =
{1, · · · , N} (where node i represents agent i). he dynamics
of agent i is described by

ẋi = ui + di, i ∈ V, (1)

where xi ∈ Rn and ui ∈ Rn are the state and control input of
agent i, respectively, and di is the local disturbance generated
by

ω̇i = Sωi, di = Cωi, (2)

where ωi ∈ Rp and all the eigenvalues of S ∈ Rp×p
are distinct lying on the imaginary axis, which implies the
boundedness of the disturbance.

Agent i ∈ V has a privately-known local cost function fi :
Rn → R and a local resource di ∈ Rn. Besides, an allocation
xi ∈ Rn should be made by agent i. The objective for these
N agents is to make suitable allocations such that minimize
the global cost function f(x) with f(x) =

∑N
i=1 f(xi).

Moreover, the allocations made by these agents satisfy the
network resource constraint, i.e.,

∑N
i=1 xi =

∑N
i=1 di, where∑N

i=1 di is the total network resource, consisted of all the
local resources. To be strict, the resource allocation problem
can be formulated as follows:

min
x∈RnN

f(x), f(x) =
∑
i∈V

f(xi),

subject to
∑
i∈V

xi =
∑
i∈V

di.
(3)

Our task is to provide a distributed resource allocation
algorithm for every agent such that the decisions made by
all agents not only satisfy the network resource constraint,
but also minimize the global cost function.

In addition, the following assumption was widely used in
the distributed resource allocation literature (e.g., [10], [7]).

Assumption 1. The local cost function fi is ω-strongly
convex and differentiable with θ-Lipschitz gradient.

Assumption 1 guarantees the existence and uniqueness of
optimal solution to problem (3).

According to [14, Theorem 3.34], it is not hard to obtain
the following optimality condition for problem (3).

Lemma 1. If x∗i , (i ∈ {1, . . . , N}) is the minimum of
problem (3), then we have

∇fi(x∗i ) =∇fj(x∗j ), ∀ i, j ∈ V,
N∑
i=1

x∗i =

N∑
i=1

di. (4)

Conversely, if the condition (4) is satisfied for a feasible point
x∗i (i ∈ {1, . . . , N}) of (3), then x∗i (i ∈ {1, . . . , N}) is the
global minimum of problem (3).

III. MAIN RESULT

In this section, a distributed resource algorithms is first
given in Subsection III-A. Then the convergence of the
algorithm is analyzed in Subsection III-B.

A. Distributed Algorithm Design

A useful lemma about the local external disturbance is
given first, whose proof can be found in [9].

Lemma 2. Let p(λ) = λs + p1λ
s−1 + · · · + ps be the

minimal polynomial of S, and then the disturbance (2) can
be rewritten as

τ̇i = (In ⊗ Φ)τi, di(t) = (In ⊗Ψ)τi, (5)

where τi = [τTi1 · · · τTin]T , τij =

[dij(t)
ddij(t)
dt · · · ds−1dij(t)

dts−1 ]T , j = 1, . . . , n,
Ψ =

[
1|01×(s−1)

]
and

Φ =

[
0 Is−1
−ps −ps−1 · · · −p1

]
.

Clearly, there exists a vector ζ such that F = Φ +GΨ is
Hurwitz. As a result, there is a positive definite symmetric
matrix P satisfying FTP + PF = −2Is.

For solving the resource allocation problem (3), the fol-
lowing distributed resource allocation algorithm is designed
for agent i.

ẋi =−∇fi(xi)− yi − (In ⊗Ψ)ηi,

ẏi =k1

(∑N

j=1
aij(zi − zj)− di + xi

)
− k2

∑N

j=1
aij(yi − yj),

żi =−
(∑N

j=1
aij(zi − zj)− di + xi

)
,

η̇i =(In ⊗ F )ηi + (In ⊗G)ui

(6)

To compensate the disturbances asymptotically, the term
τi(t)− ηi(t) must vanish asymptotically. Performing a trans-
formation η̇i = ηi − τi gives

η̇i =(In ⊗ F )ηi + (In ⊗G)(−∇fi(xi)
− yi − (In ⊗Ψ)ηi), (7)
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B. Convergence Analysis

Here we analyze the convergence of algorithm (6).
Let x = col(x1, . . . , xN ), y = col(y1, . . . , yN ),

z = col(z1, . . . , zN ), η = col(η1, . . . , ηN ),
d = col(d1, . . . , dN ). System (6) with the equation replaced
by (7) can be rewritten in the following compact form:

ẋ =−∇f(x)− y − (In ⊗Ψ)η,

ẏ =k1((L⊗ In)z − d+ x)− k2(L⊗ In)y,

ż =− ((L⊗ In)z − d+ x),

η̇ =(INn ⊗ F )η + (INn ⊗G)(−∇f(x)

− y − (In ⊗Ψ)η).

(8)

Then, we study the property of the equilibrium point of
algorithm (6), and then prove its convergence to the optimal
solution.

Lemma 3. Consider the resource allocation problem (3)
over a strongly connected and weight-balanced digraph. If
(x∗, y∗, z∗, η̄∗) is the equilibrium point of system (8), then
x∗ is the optimal solution of problem (3).

Proof: Because (x∗, y∗, z∗, η̄∗) is the equilibrium point of
system (8), we have

−∇f(x∗)− y∗ = 0,

k1((L⊗ In)z∗ − d+ x∗)− k2(L⊗ In)y∗ = 0,

(L⊗ In)z∗ − d+ x∗ = 0,

(INn ⊗ F )η∗ + (INn ⊗G)(−∇f(x∗)

− y∗ − (In ⊗Ψ)η∗) = 0.

(9)

which implies that(L⊗ In)y∗ = 0Nn and (INn⊗F )η∗ = 0,
we can obtain that η∗ = 0.

Owing to 1TNL = 0 and ∇f(x∗) =

col(∇f1(x∗1), . . . ,∇fN (x∗N )), we have
∑N
i=1 di =

∑N
i=1 x

∗
i

and ∇fi(x∗i ) = ∇fj(x∗j ) for any i, j ∈ V , which indicate
that x∗ is the optimal solution of problem (3) according to
Lemma 3.1 of [15]. �

Next, we prove the convergence of system (8).

Theorem 1. Under Assumption 1, consider the resource
allocation problem (3) over a strongly connected and weight-
balanced digraph. The algorithm (6) exponentially converges
to the optimal solution of problem (3) if the local cost
functions are differentiable with θ-Lipschitz gradients.

Proof: We first define the following variables to obtain a
standard stability problem:

x̃ = x−x∗, ỹ = y−y∗, z̃ = z−z∗, η̃ = η̄−(INn⊗G)x̃. (10)

For simplicity, let n = 1, and with the coordinate transfor-
mation (10), the following system is obtained via (8) and (9).


˙̃x =− (h+ ỹ + (INn ⊗Ψ)(η̃ + (INn ⊗G)x̃)),

˙̃y =k1(Lz̃ + x̃)− k2Lỹ,
˙̄z =− (Lz̃ + x̃),

˙̃η =(INn ⊗ F )η̃ + (INn ⊗ FG)x̃,

(11)

where h̃ = ∇f(x+ x∗)−∇f(x∗).
Obviously, after the coordinate transformation (10), the

origin is the equilibrium of system (11). Thus, if x̃ tends
to the origin, x converges to the optimal solution of problem
(3). Herein, the next task is to prove the convergence of x̃.

For this purpose, we first perform the following transfor-
mation to simplify system (11)

χ = (T ⊗ In)x̃, ξ = (T ⊗ In)ỹ, δ = (T ⊗ In)z̃ (12)

where T is defined by TT =
[

1√
N

1N R
]

=
[
r R

]
Based on the following orthogonal transformation,

χ =col(χ1, χ2) = [r,R]T x̃, (13a)

ξ =col(ξ1, ξ2) = [r,R]T ỹ, (13b)

δ =col(δ1, δ2) = [r,R]T z̃, (13c)

Where χ1, ξ1, ϑ1 ∈ Rn and χ2, ξ2, ϑ2 ∈ R(N−1)n. Then
from (11), we have

χ̇1 =− (rTh+ ξ1 + (rT ⊗ In)Φ),

ξ̇1 =k1χ1,

δ̇1 =− χ1,

(14a)


χ̇2 =− (ξ2 +RT h̃+ (RT ⊗ In)Φ),

ξ̇2 =k1(χ2 +RTLRδ2)− k2RTLRξ2,
δ̇2 =− (χ2 +RTLRδ2),

(14b)

With Φ = (INn ⊗Ψ)(η̃ + (INn ⊗G)(T−1 ⊗ In)χ).
Consider the following candidate Lyapunov function

V1 =
1

2

(
ω + 1

ω
k1 − 1

)
‖χ1‖2 +

1

2
‖χ1 + η1‖+

1

2ω
‖η1‖2

+
ω + 1

2ω
(k1‖χ2‖2 + ‖η2‖2 + ‖δ2‖2), (15)

The derivative of V1 along system (14) is

V̇1 =− ω + 1

ω
k1χ

T
1 r

T h̃− ω + 1

ω
k1χ

T
2 R

T h̃− ‖η1‖2

− ω + 1

ω
k2η

T
2 R

TLRη2 −
ω + 1

ω
δT2 R

TLRδ2

+ k1‖χ1‖2 − ηT1 rT h̃−
ω + 1

ω
δT2 χ2

+
ω + 1

ω
k1η

T
2 R

TLRδ2 − k1χT2 (RT ⊗ In)Φ

− (
ω + 1

ω
k1χ

T
1 + ξT1 )(rT ⊗ In)Φ. (16)

Since the digraph is strongly connected and weight-
balanced,

ηT2 R
TLRη2 ≥

1

2
λ̂2‖η2‖2, (17a)

δT2 R
TLRδ2 ≥

1

2
λ̂2‖δ2‖2. (17b)

Owing to the strong convexity of local cost functions and
the orthogonal transformation (13), we obtain

−(χT1 r
T h̃+ χT2 R

T h̃) ≤− ω‖χ‖2. (18)
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Moreover, based on the inequality ab ≤ c
2a

2 + 1
2cb

2 for
c > 0 and the Lipschitz property of the gradients of local
cost functions, we have

−δT2 χ2 ≤
1

8
λ̂2‖δ2‖2 +

2

λ̂2
‖χ2‖2, (19a)

k1η
T
2 R

TLRδ2 ≤
1

8
λ̂2‖δ2‖2 + 2

‖L‖2k21
λ̂2

‖η2‖2. (19b)

and

−ηT1 rT h̃ ≤
1

2
(‖η1‖2 + θ2‖χ‖2). (20)

Also, because ‖Φ‖ ≤ l1‖η̃‖ + l2‖χ‖ for two positive
numbers l1, l2, by completing the squares,

−(
ω + 1

ω
k1χ

T
1 + ξT1 )(rT ⊗ In)Φ ≤ (

ω + 1

2ω
k21 +

1

2
l22

+
ω + 1

ω
k1l2)‖χ‖2 + (

ω + 1

2ω
l21 +

1

2
+ l1)‖η‖2,

−k1χT2 (RT ⊗ In)Φ ≤ (
1

2
k21 + k1l2)‖χ‖2 +

1

2
l21‖χ‖2.

(21)

It results from (16), (17), (18), (19), (20) and (21) that

V̇1 ≤−
(
ωk1 −

1

2
θ2 − 2(ω + 1)

λ̂2ω
− 1

2
k21 − k1l2

− ω + 1

2ω
− ω + 1

ω
k1l2 −

1

2
l22

)
‖χ‖2

− 1

2
‖ξ1‖2 −

λ̂2(ω + 1)

4ω
‖δ2‖2

− λ̂2(ω + 1)

2ω

(
k2 −

4‖L‖2k21
λ̂22

)
‖ξ2‖2

+
(1

2
l1 +

ω + 1

2ω
l21 +

1

2
+ l1

)
‖η‖2.

Then, let us check the η̃ system. From lemma (2), we can
take V0 = η̃T (INn ⊗ P )η̃ give V̇0 ≤ −‖η̃‖2 + l0‖χ‖2 for a
positive real number l0.

Take the following Lyapunov function candidate for the
whole system V = V1 + l3V0, l3 = 1

2 l1 + ω+1
2ω l21 + l1 + 1

Then, we have

V̇ ≤−
(
ωk1 −

1

2
θ2 − 2(ω + 1)

λ̂2ω
− 1

2
k21 − k1l2

− ω + 1

2ω
− ω + 1

ω
k1l2 −

1

2
l22 − l3l0

)
‖χ‖2

− λ̂2(ω + 1)

4ω
‖δ2‖2 −

1

2
‖η̃‖2 − 1

2
‖ξ1‖2

− λ̂2(ω + 1)

2ω

(
k2 −

4‖L‖2k21
λ̂22

)
‖ξ2‖2

Where k2 >
4‖L‖2k21

λ̂2
2

and taking k1 satisfying −
(
ωk1− 1

2θ
2−

2(ω+1)

λ̂2ω
− 1

2k
2
1 − k1l2 − ω+1

2ω −
ω+1
ω k1l2 − 1

2 l
2
2 − l3l0

)
≥ 1.

Then it follows from above that the system (14) exponentially
converges to the origin, i.e., x exponentially converges to x∗

based on the previous analysis and Lemma 3. �

IV. CONCLUSIONS

In this paper, a continuous-time resource allocation prob-
lem with weight-balanced digraphs and external disturbance
has been investigated. We considered problem degrades into
the differentiable resource allocation problem, a simplified
algorithm has been obtained, under which the allocated
decision can exponentially converge to the exact optimal
solution.
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