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Abstract— Lohe model is a typical dynamic network of non-
linear multi-agent systems. Under strongly connected topolo-
gies, the synchronization problem of Lohe oscillators is inves-
tigated. The obtained results show that, limited on a half unit
sphere, synchronization of Lohe model can be achieved. To
analyze exponential synchronization, a matrix Riccati differ-
ential equation of synchronization errors is proposed for the
first time. It is proved that, after a finite amount of time, the
synchronization errors converge to zero exponentially.

Index Terms— Lohe model, exponential synchronization,
strongly connected topology.

I. INTRODUCTION

Synchronization behavior is a common phenomenon in
biological [1], [2], ecological [3] and mechanical systems
[4]. There are many mathematical models to describe the
phenomenon such as Boid model [5], Vicsek model [6] and
Kuramoto model[7]. The dynamic equations of the Kuramoto
model composed of m oscillators are described as follows:

θ̇i = ωi + k
m

∑
j=1

ai j sin(θ j −θi), i = 1,2, ∙ ∙ ∙ ,m, (1)

where θi’s are the phase angles, ωi’s are the natural fre-
quencies, A = (ai j) is the nonnegative adjacency matrix
of the interconnecting network and k > 0 is the control
gain. Kuramoto model has been applied to many fields
such as neuro-science [8], power systems [9] and chemical
engineering [10]. Elegant summaries on synchronization of
Kuramoto model can be found in [11] and [12]. It is well-
known that Kuramoto model actually describes a collective
behavior on the unit circle of the plane. A generalized form
of Kuramoto model on the unit sphere of a high-dimensional
linear space, called high-dimensional Kuramoto model or
Lohe model, is

ṙi = Ωiri + k
m

∑
j=1

ai j(r j −
rT

i r j

rT
i ri

ri), i = 1,2, ∙ ∙ ∙ ,m, (2)

where ri ∈ Rn is the state of oscillator i, Wi is a real
n×n skew-symmetric matrix, k > 0 is the control gain and
A = (ai j)∈Rm×m is the adjacency matrix of the interconnect-
ing network. In the pioneering literatures [13], [14], Lohe
gave many numerical simulations to verify the collective
dynamical behaviors of (2). For the case of Ωi = 0 in (1),
Olfati-Saber first provided rigorous mathematical proof for
synchronization of Lohe model under a topology of the
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complete graph [15]. In our earlier work [16], we investigated
the synchronization of Lohe model under general undirected
graph. By using LaSalle invariance principle, it is proved
that synchronization can be achieved if the topology is a
connected undirected graph and all the initial states are
limited on a half unit sphere. In [17], a more general high-
dimensional Kuramoto model defined on a curved surface is
investigated. In [18] and [19], for the topology of complete
graph, exponential synchronization is proved by using the
concept of order parameter. A natural problem is how to
achieve exponential synchronization for Lohe model under
general topologies instead of a complete graph.

In this paper, the synchronization of Lohe model under
a general undirect network limited on a half sphere is
achieved. The synchronization errors are described by a
matrix Riccati differential equation, by which a sufficient
condition for exponential synchronization is achieved for the
case of general directed topolgies.

The rest of this paper is organized as follows. Section
2 includes our main results. Section 3 shows a simulation.
Finally, Section 4 is devoted to a summary of our main
results.

II. MAIN RESULT

Consider the Lohe model under the topology described
by a directed graph G = (V,E,A), which is composed a set
of nodes V = {1,2, ∙ ∙ ∙ ,m}, set of edges E ⊂ V ×V and
a adjacent matrix A = (ai j) ∈ {0,1}. An edge (i, j) mean
that agent j can receive the state information of agent i.
Adjacency matrix defined that

ai j =

{
1, ( j, i) ∈ E

0, otherwise.

The Laplace matrix L = (li j) of a digraph G defined by

li j =






−ai j, i 6= j,

∑
k 6=i

aik, i = j.

Lemma 1: (Corollary 3 of [21]) Let G = (V,E) be a
directed graph with Laplacian matrix L. If G is strongly
connected, then L has a simple zero eigenvalue and a positive
left-eigenvector associated to the zero eigenvalue.
In this paper, we only consider the Lohe model with identical
oscillators.

Lemma 2: (Proposition 1 of [16]) Consider the Lohe
model (2) with ΩT

i = −Ωi, the value of ‖ri‖ is a constant
for any t ≥ 0 and i = 1,2, ∙ ∙ ∙ ,m.
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If Ωi = Ω for each i = 1,2, ∙ ∙ ∙ ,m, then with the transfor-
mation zi(t) = e−Ωt ri(t), we have

żi = k
m

∑
j=1

ai j(z j − (zT
i z j)zi). (3)

So, without loss of generality, we consider the Lohe model
with each ri limited on the unit sphere as follows:

ṙi = k
m

∑
j=1

ai j(r j − (rT
i r j)ri). (4)

A. Synchronization of Lohe model under directed topologies

Lemma 3: Let v ∈ Rn be a fixed vector and ε be a small
positive number. Set

Sε
v = {r = (rT

1 , rT
2 , ∙ ∙ ∙ ,rT

m)T ∈ Rmn | vTri ≥ ε ,

‖ri‖ = 1, i = 1,2, ∙ ∙ ∙ ,m.}. (5)

Then Sε
v is a positively invariant compact set of Lohe model

(4).
Proof: Let h(t) = min

1≤i≤m
vTri(t) and Pt = {i|hi(t) = h(t)}.

For any given t ≥ 0, we assume r(t) ∈ Sε
v . Since h(t) is a

non-smooth min-function, we calculate its Dini derivative
by Lemma 2.2 in [22] as follows:

D+h(t) = min
i∈Pt

ḣi(t)

= min
i∈Pt

vT

(

k
m

∑
j=1

ai j(r j(t)− (rT
i (t)r j(t))ri(t))

)

= min
i∈Pt

k
m

∑
j=1

ai j(v
Tr j(t)− (rT

i (t)r j(t))v
Tri(t))

≥ min
i∈Pt

k
m

∑
j=1

ai j(v
Tr j(t)− vTri(t))

= min
i∈Pt

k
m

∑
j=1

ai j(v
Tr j(t)−h(t))

≥ 0. (6)

Thus, h(t) is a nondecreasing function. So, if r(0)∈ Sε
v , then

vTri(t) > 0 for all t ≥ 0 and i = 1,2, ∙ ∙ ∙ ,m. Moreover, by
Lemma 2, we have ri(t) = 1 for any t ≥ 0. Therefore, Sε

v is
a positively invariant set of (4).

Theorem 1: Consider the Lohe model (4) with k > 0 and
the weighted adjacency matrix A = (ai j) of the digraph G .
Suppose that G is strongly connected and there exists v ∈ Rn

such that vTri(0) > 0 for every i = 1,2, ∙ ∙ ∙ ,m. Then r(t)
converges to a synchronization point, that is, there exists
r̄ ∈ Rn such that limt→+∞ ri(t) = r̄ for every i = 1,2, ∙ ∙ ∙ ,m.

Proof: Let si(t) = vTri(t) for every i = 1,2, ∙ ∙ ∙ ,m and
t ≥ 0. From the limitation on the initial conditions, it follows
that there exists ε > 0 such that

si(0) = vTri(0) ≥ ε ∀ i = 1,2, ∙ ∙ ∙ ,m, (7)

which implies that each ri(0) belongs to Sε
v denoted by (5)

in Lemma 3. Thus, by the invariance of Sε
v in Lemma 3, we

have

si(t) = vTri(t) ≥ ε > 0, ∀ i = 1,2, ∙ ∙ ∙ ,m, ∀ t ≥ 0. (8)

Considering Lohe model (4), we get the dynamical equations
of si as

ṡi = k
m

∑
j=1

ai jv
T(r j − rT

j riri) (9)

= k
m

∑
j=1

ai js j − k
m

∑
j=1

ai jr
T
j risi

= k
m

∑
j=1

ai j(s j − si)+ k
m

∑
j=1

ai j(1− rT
j ri)si,

which can be rewritten in the compact form

ṡ = −kLs+ kF(r), (10)

where s = (s1,s2, ∙ ∙ ∙ ,sm)T , L is the Laplacian matrix of G
and

F(r) =














m
∑
j=1

a1 j(1− rT
j r1)s1

m
∑
j=1

a2 j(1− rT
j r2)s2

...
m
∑
j=1

am j(1− rT
j rm)sm














. (11)

Since digraph G is strongly connected, by Lemma 1, we have
that the Laplacian matrix L has a positive left eigenvector
associated with the zero eigenvalue, i.e. there exists vector
β = (β1,β2, ∙ ∙ ∙ ,βm)T ∈ Rm s.t. β T L = 0 with all βi > 0 (i =
1,2, ∙ ∙ ∙ ,m). Let

V (r) = −β T (rT
1 v,rT

2 v, ∙ ∙ ∙ ,rT
mv)T = −β T s.

It is easy to see

V̇ = −β T ṡ

= kβ T Ls− kβ T F

= 0− k
m

∑
i=1

m

∑
j=1

ai j(1− rT
j ri)βisi

≤ 0. (12)

In the following, we assume that the equality in (12) holds.
Then

ai j(1− rT
j ri)βisi = 0 (i, j = 1,2, ∙ ∙ ∙ ,m). (13)

Since βi > 0 and si > 0, it follows from (13) that ai j > 0
implies ri = r j. In other words, if ( j, i) is an edge, then ri =
r j. Therefore, by the strong connectedness of graph G , we
have r1 = r2 = ∙ ∙ ∙ = rm. Thus

{r|V̇ = 0} = {r|r1 = ∙ ∙ ∙ = rm}. (14)

Moreover, we have an invariant compact set as follows:

Ω = {r = (rT
1 ,rT

2 , ∙ ∙ ∙ ,rT
m)T ∈ Rmn | ri ∈ Rn,

‖ri‖ = 1, i = 1,2, ∙ ∙ ∙ ,m}. (15)

Thus, by LaSalle Invariance Principle, r(t) converges to a
consensus point.

Remark 1: The geometric meaning of vTri(0) > 0 is that
the angle between vectors v and ri(0) is less than 90 degrees.
The assumption of vTri(0) > 0 (i = 1,2, ∙ ∙ ∙ ,m) means that

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

730



all the initial vectors lie in an open semi-sphere centered at
the origin, which is helpful to construct a compact invariant
set Sε

v for a sufficiently small number ε > 0.
Remark 2: Compared with the existing results on syn-

chronization of Lohe model [18], [19], we achieve the
synchronization result for general directed graphs instead of
a complete graph. Our method is completely different from
that used in [18] and [19]. Although we do not prove the
exponential synchronization in Theorem 1, we have weak-
ened the topology condition to a directed graph. In the next
subsection, we try to prove the exponential synchronization.

B. Exponential synchronization of Lohe model

Let ei j = 1− rT
i r j. It is easy to see that ei j = e ji, eii = 0

and 0 ≤ ei j ≤ 2 for any i, j = 1,2, ∙ ∙ ∙ ,n. Obviously, ei j = 0
if and only if ri = r j. So ei j reflects the error between ri and
r j. In the following, let us investigate the dynamics of all
the ei j’s. With simple calculations, we have

ėi j = −rT
j ṙi − rT

i ṙ j

= −k
m

∑
l=1

ail(r
T
j rl − (rT

i rl)r
T
j ri)

−k
m

∑
l=1

a jl(r
T
i rl − (rT

j rl)r
T
i r j)

= k
m

∑
l=1

ailel j − k

(
m

∑
l=1

ail

)

ei j

−k
m

∑
l=1

aileli + k

(
m

∑
l=1

aileil

)

ei j

+k
m

∑
l=1

a jleli − k

(
m

∑
l=1

a jl

)

ei j

−k
m

∑
l=1

a jlel j + k

(
m

∑
l=1

a jle jl

)

ei j. (16)

Let E =(ei j)∈Rm×m, αi(E) =
m
∑

l=1
aileil ,

α(E)=(α1(E),α2(E), ∙ ∙ ∙ ,αm(E))T∈Rm

and

Λ(E) =








α1(E)
α2(E)

. . .
αm(E)








.

Then we can rewrite (16) into the Riccati matrix differential
equation

Ė=−kLE−kELT−kα(E)1T−k1αT(E)+kΛ(E)E+kEΛ(E), (17)

where L is the Laplacian matrix of the topology.
In the following, we will use (17) to investigate whether

E converges to zero exponentially. Before our main result on
exponential synchronization, we first give some lemmas.

Lemma 4: Consider a sequence of unit vectors ri ∈ Rn

(i = 1,2, ∙ ∙ ∙ ). Let ei j = 1− rT
i r j for any i, j = 1,2, ∙ ∙ ∙ . Then

ei j ≤ 2s(eik1 + ek1k2 + ∙ ∙ ∙+ eks−1ks + eks j) (18)

for any s positive integers k1, k2, ∙ ∙ ∙ , ks.
Proof: (By Mathematical Induction) For the case of

s = 1, we consider the inequality

(2rk1 − ri − r j)
T (2rk1 − ri − r j) ≥ 0. (19)

With simple calculations, it follows from (19) that

6−4rT
k1

ri −4rT
k1

r j +2rT
i r j ≥ 0, (20)

that is,
ei j ≤ 2(ek1i + ek1 j). (21)

Thus (18) holds for s = 1. Suppose that (18) holds for the
case of s−1. Then for the case of s, we have

ei j ≤ 2(eiks + eks j)

≤ 2(2s−1(eik1 + ek1k2 + ∙ ∙ ∙+ eks−1ks)+ eks j)

≤ 2s(eik1 + ek1k2 + ∙ ∙ ∙+ eks−1ks + eks j). (22)

Corollary 1: Assume G is a strongly connected digraph
with weighted adjacency matrix A = (ai j) ∈ Rm×m. Under
the conditions of Lemma 4, the following statements hold:

(i) there exists a constant c1 > 0 such that

ei j ≤ c1

m

∑
p=1

m

∑
q=1

apqepq, ∀ i, j = 1,2, ∙ ∙ ∙ ,m; (23)

(ii) there exists a constant c2 > 0 such that
m

∑
p=1

m

∑
q=1

apqepq ≥ c2

m

∑
i=1

m

∑
j=1

ei j. (24)

Proof: (i) Since G is strongly connected, for any i 6= j,
there is a directed path from j to i denoted by ik1k2 ∙ ∙ ∙ks j.
Since all aik1 , ak1k2 ,∙ ∙ ∙ , aks j are positive, by (18), there is a
constant c1 > 0 such that

ei j ≤ c1(aik1eik1 +ak1k2ek1k2 + ∙ ∙ ∙+aks jeks j)

≤ c1

n

∑
p=1

n

∑
q=1

apqepq. (25)

(ii) Let c2 = 1
c1m2 . Then Eq. (24) follows from (23).

Theorem 2: Consider Lohe model (4) with a strongly
connected topology. Under the conditions of Theorem 1,
after a finite time, the synchronization errors ei j = 1− rT

i r j

(i, j = 1,2, ∙ ∙ ∙ ,m) will converge to zero exponentially.
Proof: Since the topology is strongly connected, by al-

gebraic graph theory, there is a unit vector β = (β1, ∙ ∙ ∙ ,βm)∈
Rm with each βi > 0 and β T 1 = 1 such that β TL = 0. We
construct a Lyapunov function for the dynamic equation (17)
as follows:

V (E) =
1
2

m

∑
i=1

m

∑
j=1

βiβ jei j =
1
2

β TEβ .

Let

Φη = {E = (ei j) ∈ Rm×m| 0 ≤ ei j ≤ η ,∀i, j = 1,2, ∙ ∙ ∙}

and

Ψη={E=(ei j)∈Rm×m|V(E)<β 2
minη/2, ei j≥ 0,∀i, j=1,2, ∙ ∙ ∙},
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where 0 < η < 1 and βmin = min1≤i≤m βi. It is easy to
check that Ψη ⊂ Φη . By Theorem 1, the synchronization
is achieved. So after a finite amount of time, we have
E(t)∈Ψη ⊂Φη . From β T1 = 1, β TL = 0 and (17), it follows
that

V̇ (E) =
1
2

β TĖβ

= −kβ Tα(E)+ kβ T Λ(E)Eβ

= −k
m

∑
i=1

βi

m

∑
l=1

aileil + k
m

∑
i=1

m

∑
j=1

βi

(
m

∑
l=1

aileil

)

ei jβ j

= −k
m

∑
i=1

m

∑
l=1

(1−
m

∑
j=1

β jei j)βiaileil

≤ −k(1−η)
m

∑
i=1

m

∑
l=1

βiaileil

≤ −k(1−η)βmin

m

∑
i=1

m

∑
l=1

aileil , (26)

where βmin = min
1≤i≤m

βi. Since the topology is strongly con-

nected, by (26) and (24) of Corollary 1, we have

V̇ (E) ≤ −k(1−η)βminc2

m

∑
i=1

m

∑
l=1

eil ,

≤ −k(1−η)
βmin

β 2
max

c2

m

∑
i=1

m

∑
l=1

βiβleil ,

= −cV (E), (27)

where βmax = max
1≤i≤m

βi and c = k(1−η) βmin
2β 2

max
c2 > 0. By the

definition of Ψη and (26), we conclude that Ψη is a positively
invariant set with respect to (17), and V (E) converges to
zero exponentially. Therefore, all the synchronization errors
ei j = 1− rT

i r j (i, j = 1,2, ∙ ∙ ∙ ,m) tend to zero exponentially.

III. SIMULATION

In this section, we give some simulations to validate the
obtained theoretical results.

Consider Lohe model (4) with n = 3,m = 5 and the
adjacent matrix as follows:

A =









0 0 0 0 1
1 0 0 1 0
0 1 0 0 0
0 0 1 0 1
0 1 0 0 0









.

Then, the dynamical equations of Lohe model (4) with k = 1
are :






ṙ1 = r5 − (rT
5 r1)r1,

ṙ2 = (r1 − (rT
1 r2)r2)+(r4 − (rT

4 r2)r2),

ṙ3 = r2 − (rT
2 r3)r3,

ṙ4 = (r3 − (rT
3 r4)r4)+(rT

5 − (r5r4)r4),

ṙ5 = r2 − (rT
2 r5)r5.

Let the initial states of the Lohe oscillators be

r1(0) = (−0.6545, 0.1391, 0.7431)T,

r2(0) = (−0.4973, −0.5523, 0.6691)T,

r3(0) = (0.6113, −0.6789, 0.4067)T,

r4(0) = (0.3025, 0.06425, 0.9511)T,

r5(0) = (0.6789, 0.3023, 0.6691)T.

Fig.1 shows that the time response curves of agent’s are
synchronized. Fig.2 shows the trajectories of all the agents
of Lohe model converge to the same point on the unit sphere.
In Fig.3, the exponential decay of the synchronization errors
is displayed.

0 1 2 3 4 5
-1

0

1

t

r i1

0 1 2 3 4 5
-1

-0.5

0

0.5

t

r i2

0  0.5 1  1.5 2  2.5
0.4

0.6

0.8

1

t

r i3

Fig. 1. Time response curves of of Lohe oscillators

Fig. 2. Synchronization of Lohe model shown in the state space

IV. CONCLUSION

In this paper, the synchronization problem of Lohe oscil-
lators with strongly connected topologies has been solved
under the initial state limitations on a unit semi-sphere.
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Fig. 3. Time response curves of the synchronization errors

A new form of matrix Riccati differential equation for
synchronization errors has been proposed for the first time.
The local exponential synchronization has been achieved for
Lohe model with strongly connected digraph. Some numer-
ical simulations have been given to illustrate the obtained
theoretical results.
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